
CSE 332: Data Abstractions

Lecture 4: Priority Queues

Ruth Anderson

Winter 2013

Announcements

• Project 1 – phase A due Wed Jan 16th, 11pm via catalyst

• Homework 1 – due Friday Jan 18th at beginning of class

• Links to materials from section – useful for project 1

• Info sheets?

1/14/2013 2

Today

• Finish up Asymptotic Analysis

• New ADT! Priority Queues

1/14/2013 3

Scenario

What is the difference between waiting for service at a pharmacy

versus an ER?

Pharmacies usually follow the rule

First Come, First Served

Emergency Rooms assign priorities

based on each individual's need

1/14/2013 4

Scenario

What is the difference between waiting for service at a pharmacy

versus an ER?

Pharmacies usually follow the rule

First Come, First Served

Emergency Rooms assign priorities

based on each individual's need

Queue

Priority

Queue

1/14/2013 5

A new ADT: Priority Queue

• Textbook Chapter 6

– We will go back to binary search trees (ch4) and hash

tables (ch5) later

– Nice to see a new and surprising data structure first

• A priority queue holds compare-able data

– Unlike stacks and queues need to compare items

• Given x and y, is x less than, equal to, or greater than y

• What this means can depend on your data

• Much of course will require comparable data: e.g. sorting

– Integers are comparable, so will use them in examples

• But the priority queue ADT is much more genera

• Typically two fields, the priority and the data

1/14/2013 6

Priority Queue ADT

• Assume each item has a “priority”

– The lesser item is the one with the greater priority

– So “priority 1” is more important than “priority 4”

– Just a convention, could also do a maximum priority

• Main Operations:

– insert

– deleteMin

• Key property: deleteMin returns and deletes from the queue

the item with greatest priority (lowest priority value)

– Can resolve ties arbitrarily

insert deleteMin

 6 2

 15 23

 12 18

45 3 7

1/14/2013 7

Aside: We will use ints as data and priority

For simplicity in lecture, we’ll often suppose items are just ints

and the int is also the priority

• So an operation sequence could be

 insert 6

 insert 5

 x = deleteMin // Now x = 5.

– int priorities are common, but really just need comparable

• Not having “other data” is very rare

– Example: print job has a priority and the file to print is the

data

1/14/2013 8

Priority Queue Example

 insert a with priority 5

 insert b with priority 3

 insert c with priority 4

 w = deleteMin

 x = deleteMin

 insert d with priority 2

 insert e with priority 6

 y = deleteMin

 z = deleteMin

 after execution:

To simplify our examples,

we will just use the priority

values from now on

Analogy: insert is like enqueue, deleteMin is like dequeue

But the whole point is to use priorities instead of FIFO

1/14/2013 9

Priority Queue Example

 insert a with priority 5

 insert b with priority 3

 insert c with priority 4

 w = deleteMin

 x = deleteMin

 insert d with priority 2

 insert e with priority 6

 y = deleteMin

 z = deleteMin

 after execution:

 w = b

 x = c

 y = d

 z = a

To simplify our examples,

we will just use the priority

values from now on

Analogy: insert is like enqueue, deleteMin is like dequeue

But the whole point is to use priorities instead of FIFO

1/14/2013 10

Applications

Like all good ADTs, the priority queue arises often

– Sometimes “directly”, sometimes less obvious

• Run multiple programs in the operating system

– “critical” before “interactive” before “compute-intensive”

– Maybe let users set priority level

• Treat hospital patients in order of severity (or triage)

• Select print jobs in order of decreasing length?

• Forward network packets in order of urgency

• Select most frequent symbols for data compression (cf. CSE143)

• Sort: insert all, then repeatedly deleteMin

– Much like Project 1 uses a stack to implement reverse

1/14/2013 11

More applications

• “Greedy” algorithms

– Select the ‘best-looking’ choice at the moment

– Will see an example when we study graphs in a few weeks

• Discrete event simulation (system modeling, virtual worlds, …)

– Simulate how state changes when events fire

– Each event e happens at some time t and generates new

events e1, …, en at times t+t1, …, t+tn

– Naïve approach: advance “clock” by 1 unit at a time and

process any events that happen then

– Better:

• Pending events in a priority queue (priority = time happens)

• Repeatedly: deleteMin and then insert new events

• Effectively, “set clock ahead to next event”

1/14/2013 12

Preliminary Implementations of Priority Queue ADT

insert deleteMin

Unsorted Array

Unsorted Linked-List

Sorted Circular Array

Sorted Linked-List

Binary Search Tree

(BST)

Notes: Worst case, Assume arrays have enough space
1/14/2013 13

Need a good data structure!

• Next we will show an efficient, non-obvious data structure for this ADT

– But first let’s analyze some “obvious” ideas for n data items

– All times worst-case; assume arrays “have room”

data insert algorithm / time deleteMin algorithm / time

unsorted array add at end O(1) search O(n)

unsorted linked list add at front O(1) search O(n)

sorted circular array search / shift O(n) move front O(1)

sorted linked list put in right place O(n) remove at front O(1)

binary search tree put in right place O(n) leftmost O(n)

1/14/2013 14

Aside: More on possibilities

• Note: If priorities are inserted in random order, binary search

tree will likely do better than O(n)

– O(log n) insert and O(log n) deleteMin on average

– Could get same performance from a balanced binary search

tree (e.g. AVL tree we will study later)

• One more idea: if priorities are 0, 1, …, k can use array of lists

– insert: add to front of list at arr[priority], O(1)

– deleteMin: remove from lowest non-empty list O(k)

1/14/2013 15

Our Data Structure: The Heap

The Heap:

• Worst case: O(log n) for insert

• Worst case: O(log n) for deleteMin

• If items arrive in random order, then the average-case of insert

is O(1)

• Very good constant factors

Key idea: Only pay for functionality needed

• We need something better than scanning unsorted items

• But we do not need to maintain a full sorted list

• We will visualize our heap as a tree, so we need to review some

tree terminology

1/14/2013 16

Reviewing Some Tree Terminology
root(T):

leaves(T):

children(B):

parent(H):

siblings(E):

ancestors(F):

descendents(G):

subtree(G):

A

E

B

D F

C

G

I H

L J M K N

Tree T

1/14/2013 17

Some More Tree Terminology
depth(B):

height(G):

height(T):

degree(B):

branching factor(T):

A

E

B

D F

C

G

I H

L J M K N

Tree T

1/14/2013 18

Reviewing Some Tree Terminology
root(T):

leaves(T):

children(B):

parent(H):

siblings(E):

ancestors(F):

descendents(G):

subtree(G):

A

E

B

D F

C

G

I H

L J M K N

Tree T A

D-F, I, J-N

D, E, F

G

D, F

B, A

H, I, J-N

G and its

children

1/14/2013 19

Some More Tree Terminology
depth(B):

height(G):

height(T):

degree(B):

branching factor(T):

1

2

4

3

0-5

A

E

B

D F

C

G

I H

L J M K N

Tree T

1/14/2013 20

Types of Trees

Binary tree: Every node has ≤2 children

n-ary tree: Every node as ≤n children

Perfect tree: Every row is completely full

Complete tree: All rows except possibly the bottom are

 completely full, and it is filled from left to

 right

Perfect Tree Complete Tree

1/14/2013 21

Some Basic Tree Properties

Nodes in a perfect binary tree of height h?

 2h+1-1

Leaf nodes in a perfect binary tree of height h?

 2h

Height of a perfect binary tree with n nodes?

 ⌊log2 n⌋

Height of a complete binary tree with n nodes?

 ⌊log2 n⌋

1/14/2013 22

Properties of a Binary Min-Heap

More commonly known as a binary heap or simply a heap

– Structure Property:

A complete [binary] tree

– Heap Property:

The priority of every non-root node is greater than

the priority of its parent

How is this different from a binary search tree?

1/14/2013 23

Properties of a Binary Min-Heap

More commonly known as a binary heap or simply a heap

• Structure Property:

A complete [binary] tree

• Heap Order Property:

The priority of every non-root node is greater than the

priority of its parent

25 13

80 20

30

99 60 40

80 20

10

50 700

85

A Heap Not a Heap

1/14/2013 24

Properties of a Binary Min-Heap

• Where is the minimum priority item?

 At the root

• What is the height of a heap with n items?

 ⌊log2 n⌋

99 60 40

80 20

10

50 700

85

A Heap

1/14/2013 25

Heap Operations

• findMin:

• deleteMin: percolate down.

• insert(val): percolate up.

99 60 40

80 20

10

50 700

85

65

1/14/2013 26

Operations: basic idea

• findMin:

 return root.data

• deleteMin:

1. answer = root.data

2. Move right-most node in last

row to root to restore

structure property

3. “Percolate down” to restore

heap order property

• insert:

1. Put new node in next position

on bottom row to restore

structure property

2. “Percolate up” to restore

heap order property

99 60 40

80 20

10

50 700

85

Overall strategy:

• Preserve complete tree

structure property

• This may break heap order

property

• Percolate to restore heap

order property

1/14/2013 27

DeleteMin Implementation

1. Delete value at root node (and store it for

later return)

2. There is now a "hole" at the root. We

must "fill" the hole with another value,

must have a tree with one less node,

and it must still be a complete tree

3. The "last" node is the is obvious choice,

but now the heap order property is

violated

4. We percolate down to fix the heap order:

While greater than either child

 Swap with smaller child

3 4

9 8 5 7

10 6 9 11

3 4

9 8 5 7

10 6 9 11

10

1/14/2013 28

Percolate Down

Percolate down:

• Keep comparing with both children

• Move smaller child up and go down one level

• Done if both children are  item or reached a leaf node

• Why does this work? What is the run time?

3 4

9 8 5 7

10

6 9 11

4

9 8 5 7

10

6 9 11

3

8 4

9 10 5 7

6 9 11

3
?

?

1/14/2013 29

DeleteMin: Run Time Analysis

• Run time is O(height of heap)

• A heap is a complete binary tree

• Height of a complete binary tree of n nodes?

– height =  log2(n) 

• Run time of deleteMin is O(log n)

1/14/2013 30

Insert

• Add a value to the tree

• Structure and heap order properties

must still be correct afterwards

8 4

9 10 5 7

6 9 11

1

2

1/14/2013 31

Insert: Maintain the Structure Property

• There is only one valid tree shape after

we add one more node!

• So put our new data there and then

focus on restoring the heap order

property

8 4

9 10 5 7

6 9 11

1

2

1/14/2013 32

Maintain the heap order property

2

8 4

9 10 5 7

6 9 11

1

Percolate up:

• Put new data in new location

• If parent larger, swap with parent, and continue

• Done if parent  item or reached root

• Why does this work? What is the run time?

?

2
5

8 4

9 10 7

6 9 11

1

?

2

5

8

9 10 4 7

6 9 11

1 ?

1/14/2013 33

A Clever Trick for Storing the Heap…

Clearly, insert and deleteMin are worst-case O(log n)

• But we promised average-case O(1) insert (how??)

Insert requires access to the “next to use” position in the tree

• Walking the tree from root to leaf requires O(log n) steps

• Insert and Deletemin would have to update the “next to use”

reference each time: O(log n)

We should only pay for the functionality we need!!

• Why have we insisted the tree be complete? 

All complete trees of size n contain the same edges

• So why are we even representing the edges?

Here comes the really clever bit about implementing heaps!!!

1/14/2013 34

Array Representation of a Binary Heap

From node i:

• left child:

• right child:

• parent:

• We skip index 0 to make the math simpler

• Actually, it can be a good place to store the current size

of the heap

G E D

C B

A

J K H I

F

L

7

1

2 3

4 5 6

9 8 10 11 12

A B C D E F G H I J K L

0 1 2 3 4 5 6 7 8 9 10 11 12 13

1/14/2013 35

Array Representation of a Binary Heap

From node i:

• left child: 2i

• right child: 2i+1

• parent: i / 2

• We skip index 0 to make the math simpler

• Actually, it can be a good place to store the current size

of the heap

G E D

C B

A

J K H I

F

L

7

1

2 3

4 5 6

9 8 10 11 12

A B C D E F G H I J K L

0 1 2 3 4 5 6 7 8 9 10 11 12 13

1/14/2013 36

