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Announcements 

• Project 1 – phase A due Wed Jan 16th, 11pm via catalyst 

• Homework 1 – due Friday Jan 18th at beginning of class 

 

• Links to materials from section – useful for project 1 

• Info sheets? 
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Today 

• Finish up Asymptotic Analysis 

• New ADT! Priority Queues 
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Scenario 

What is the difference between waiting for service at a pharmacy 

versus an ER? 

 

Pharmacies usually follow the rule 

First Come, First Served 

 

Emergency Rooms assign priorities  

based on each individual's need 
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Scenario 

What is the difference between waiting for service at a pharmacy 

versus an ER? 

 

Pharmacies usually follow the rule 

First Come, First Served 

 

Emergency Rooms assign priorities  

based on each individual's need 

 

 

Queue 

Priority 

Queue 
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A new ADT: Priority Queue 

• Textbook Chapter 6 

– We will go back to binary search trees (ch4)  and hash 

tables (ch5) later 

– Nice to see a new and surprising data structure first 

• A priority queue holds compare-able data 

– Unlike stacks and queues need to compare items 

• Given x and y, is x less than, equal to, or greater than y 

• What this means can depend on your data 

• Much of course will require comparable data: e.g. sorting 

– Integers are comparable, so will use them in examples 

• But the priority queue ADT is much more genera 

• Typically two fields, the priority and the data 
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Priority Queue ADT 

• Assume each item has a “priority” 

– The lesser item is the one with the greater priority 

– So “priority 1” is more important than “priority 4” 

– Just a convention, could also do a maximum priority 
 

 

 

 

• Main Operations:  

– insert 

– deleteMin 

 

• Key property: deleteMin returns and deletes from the queue 

the item with greatest priority (lowest priority value) 

– Can resolve ties arbitrarily 

insert deleteMin 

        6        2 

  15        23 

          12   18 

45   3    7 
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Aside: We will use ints as data and priority 

For simplicity in lecture, we’ll often suppose items are just ints 

and the int is also the priority 

• So an operation sequence could be 

  insert 6 

  insert 5 

  x = deleteMin // Now x = 5. 

– int priorities are common, but really just need comparable 

• Not having “other data” is very rare 

– Example: print job has a priority and the file to print is the 

data 
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Priority Queue Example 

 insert a with priority 5 

 insert b with priority 3 

 insert c with priority 4 

 w = deleteMin 

 x = deleteMin 

 insert d with priority 2 

 insert e with priority 6 

 y = deleteMin 

 z = deleteMin  

 

 after execution: 

 

  

To simplify our examples, 

we will just use the priority 

values from now on 

Analogy: insert is like enqueue, deleteMin is like dequeue 

But the whole point is to use priorities instead of FIFO 
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Priority Queue Example 

 insert a with priority 5 

 insert b with priority 3 

 insert c with priority 4 

 w = deleteMin 

 x = deleteMin 

 insert d with priority 2 

 insert e with priority 6 

 y = deleteMin 

 z = deleteMin  

 

 after execution: 

 

 w = b  

 x = c  

 y = d  

 z = a 

 

To simplify our examples, 

we will just use the priority 

values from now on 

Analogy: insert is like enqueue, deleteMin is like dequeue 

But the whole point is to use priorities instead of FIFO 
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Applications 

Like all good ADTs, the priority queue arises often 

– Sometimes “directly”, sometimes less obvious 

 

• Run multiple programs in the operating system 

– “critical” before “interactive” before “compute-intensive” 

– Maybe let users set priority level 

• Treat hospital patients in order of severity (or triage) 

• Select print jobs in order of decreasing length? 

• Forward network packets in order of urgency 

• Select most frequent symbols for data compression (cf. CSE143) 

• Sort: insert all, then repeatedly deleteMin 

– Much like Project 1 uses a stack to implement reverse 
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More applications 

• “Greedy” algorithms 

– Select the ‘best-looking’ choice at the moment 

– Will see an example when we study graphs in a few weeks 

• Discrete event simulation (system modeling, virtual worlds, …) 

– Simulate how state changes when events fire 

– Each event e happens at some time t and generates new 

events e1, …, en at times t+t1, …, t+tn 

– Naïve approach: advance “clock” by 1 unit at a time and 

process any events that happen then 

– Better: 

• Pending events in a priority queue (priority = time happens) 

• Repeatedly: deleteMin and then insert new events 

• Effectively, “set clock ahead to next event” 
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Preliminary Implementations of Priority Queue ADT 

insert deleteMin 

Unsorted Array 

Unsorted Linked-List 

Sorted Circular Array 

Sorted Linked-List 

Binary Search Tree 

(BST) 

Notes: Worst case, Assume arrays have enough space 
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Need a good data structure! 

• Next we will show an efficient, non-obvious data structure for this ADT 

– But first let’s analyze some “obvious” ideas for n data items 

– All times worst-case; assume arrays “have room” 

 

data         insert algorithm / time      deleteMin algorithm / time 

unsorted array          add at end          O(1)      search                 O(n) 

unsorted linked list     add at front         O(1)      search                 O(n) 

sorted circular array   search / shift       O(n)         move front          O(1) 

sorted linked list          put in right place O(n)         remove at front   O(1) 

binary search tree      put in right place O(n) leftmost               O(n) 
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Aside: More on possibilities 

• Note: If priorities are inserted in random order, binary search 

tree will likely do better than O(n)   

– O(log n) insert and O(log n) deleteMin on average 

– Could get same performance from a balanced binary search 

tree (e.g. AVL tree we will study later) 

 

• One more idea: if priorities are 0, 1, …, k can use array of  lists 

– insert: add to front of list at arr[priority], O(1) 

– deleteMin: remove from lowest non-empty list O(k) 
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Our Data Structure: The Heap 

The Heap: 

• Worst case: O(log n) for insert  

• Worst case: O(log n) for deleteMin 

• If items arrive in random order, then the  average-case of insert 

is O(1) 

• Very good constant factors 

 

Key idea: Only pay for functionality needed 

• We need something better than scanning unsorted items 

• But we do not need to maintain a full sorted list 

 

• We will visualize our heap as a tree, so we need to review some 

tree terminology 
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Reviewing Some Tree Terminology 
root(T):  

leaves(T): 

children(B): 

parent(H): 

siblings(E): 

ancestors(F): 

descendents(G): 

subtree(G): 

A 

E 

B 

D F 

C 

G 

I H 

L J M K N 

Tree T 
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Some More Tree Terminology 
depth(B): 

height(G): 

height(T): 

degree(B): 

branching factor(T): 

 

 

A 

E 

B 

D F 

C 

G 

I H 

L J M K N 

Tree T 
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Reviewing Some Tree Terminology 
root(T):  

leaves(T): 

children(B): 

parent(H): 

siblings(E): 

ancestors(F): 

descendents(G): 

subtree(G): 

A 

E 

B 

D F 

C 

G 

I H 

L J M K N 

Tree T A 

D-F, I, J-N 

D, E, F 

G 

D, F 

B, A 

H, I, J-N 

G and its 

children 
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Some More Tree Terminology 
depth(B): 

height(G): 

height(T): 

degree(B): 

branching factor(T): 

 

 

1 

2 

4 

3 

0-5 

A 

E 

B 

D F 

C 

G 

I H 

L J M K N 

Tree T 
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Types of Trees 

Binary tree:    Every node has ≤2 children 
 

n-ary tree:    Every node as ≤n children 
 

Perfect tree:   Every row is completely full 
 

Complete tree:   All rows except possibly the bottom are  

   completely full, and it is filled from left to  

   right 

Perfect Tree Complete Tree 
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Some Basic Tree Properties 

Nodes in a perfect binary tree of height h? 

 2h+1-1 
 

Leaf nodes in a perfect binary tree of height h? 

 2h 
 

Height of a perfect binary tree with n nodes? 

 ⌊log2 n⌋ 
 

Height of a complete binary tree with n nodes? 

 ⌊log2 n⌋ 
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Properties of a Binary Min-Heap 

More commonly known as a binary heap or simply a heap 

– Structure Property:   

A complete [binary] tree 

– Heap Property:  

The priority of every non-root node is greater than 

the priority of its parent 

 

 

How is this different from a binary search tree? 
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Properties of a Binary Min-Heap 

More commonly known as a binary heap or simply a heap 

• Structure Property:   

A complete [binary] tree 

• Heap Order Property:  

The priority of every non-root node is greater than the 

priority of its parent 

25 13 

80 20 

30 

99 60 40 

80 20 

10 

50 700 

85 

A Heap Not a Heap 
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Properties of a Binary Min-Heap 

• Where is the minimum priority item? 

 At the root 

 

• What is the height of a heap with n items? 

 ⌊log2 n⌋ 

 

99 60 40 

80 20 

10 

50 700 

85 

A Heap 

1/14/2013 25 



Heap Operations 

• findMin: 

• deleteMin: percolate down. 

• insert(val): percolate up. 

99 60 40 

80 20 

10 

50 700 

85 

65 
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Operations: basic idea 

• findMin:  

        return root.data 

• deleteMin:  

1. answer = root.data 

2. Move right-most node in last 

row to root to restore 

structure property 

3. “Percolate down” to restore 

heap order property 

• insert: 

1. Put new node in next position 

on bottom row to restore 

structure property 

2. “Percolate up” to restore 

heap order property 

 

99 60 40 

80 20 

10 

50 700 

85 

Overall strategy: 

• Preserve complete tree 

structure property 

• This may break heap order 

property 

• Percolate to restore heap 

order property 
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DeleteMin Implementation 

1. Delete value at root node (and store it for 

later return) 

2. There is now a "hole" at the root. We 

must "fill" the hole with another value, 

must have a tree with one less node,  

and it must still be a complete tree 

3. The "last" node is the is obvious choice, 

but now the heap order property is 

violated 

4. We percolate down to fix the heap order: 

While greater than either child 

 Swap with smaller child 

 

3 4 

9 8 5 7 

10 6 9 11 

3 4 

9 8 5 7 

10 6 9 11 

10 
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Percolate Down 

Percolate down:  

•  Keep comparing with both children  

•  Move smaller child up and go down one level 

•  Done if both children are  item or reached a leaf node 

•  Why does this work? What is the run time? 

3 4 

9 8 5 7 

10 

6 9 11 

4 

9 8 5 7 

10 

6 9 11 

3 

8 4 

9 10 5 7 

6 9 11 

3 
? 

? 
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DeleteMin: Run Time Analysis 

• Run time is O(height of heap) 

 

• A heap is a complete binary tree 

 

• Height of a complete binary tree of n nodes? 

– height =  log2(n)  

 

• Run time of deleteMin is O(log n) 
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Insert 

• Add a value to the tree 

 

• Structure and heap order properties 

must still be correct afterwards 

8 4 

9 10 5 7 

6 9 11 

1 

2 
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Insert: Maintain the Structure Property 

• There is only one valid tree shape after 

we add one more node! 

 

• So put our new data there and then 

focus on restoring the heap order 

property 

8 4 

9 10 5 7 

6 9 11 

1 

2 
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Maintain the heap order property 

2 

8 4 

9 10 5 7 

6 9 11 

1 

Percolate up: 

•  Put new data in new location 

•  If parent larger, swap with parent, and continue 

•  Done if parent  item or reached root 

•  Why does this work? What is the run time? 

? 

2 
5 

8 4 

9 10 7 

6 9 11 

1 

? 

2 

5 

8 

9 10 4 7 

6 9 11 

1 ? 
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A Clever Trick for Storing the Heap… 

Clearly, insert and deleteMin are worst-case O(log n)  

• But we promised average-case O(1) insert (how??) 
 

Insert requires access to the “next to use” position in the tree 

• Walking the tree from root to leaf requires O(log n) steps 

• Insert and Deletemin would have to update the “next to use” 

reference each time: O(log n) 
 

We should only pay for the functionality we need!! 

• Why have we insisted the tree be complete?  
 

All complete trees of size n contain the same edges 

• So why are we even representing the edges? 
 

Here comes the really clever bit about implementing heaps!!! 
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Array Representation of a Binary Heap  

From node i: 

• left child:   

• right child:  

• parent:   

• We skip index 0 to make the math simpler 

• Actually, it can be a good place to store the current size 

of the heap 

 

G E D 

C B 

A 

J K H I 

F 

L 

7 

1 

2 3 

4 5 6 

9 8 10 11 12 

A B C D E F G H I J K L 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 
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Array Representation of a Binary Heap  

From node i: 

• left child:  2i 

• right child:     2i+1 

• parent:  i / 2 

• We skip index 0 to make the math simpler 

• Actually, it can be a good place to store the current size 

of the heap 

 

G E D 

C B 

A 

J K H I 

F 

L 

7 

1 

2 3 

4 5 6 

9 8 10 11 12 

A B C D E F G H I J K L 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 
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