
CSE332: Data Abstractions

Lecture 23: Minimum Spanning Trees

Ruth Anderson
Winter 2013

Announcements

● Homework 7 – due NOW at the BEGINNING of lecture!
● Homework 8 – coming soon!

● Project 3 – the last programming project!
● ALL Code - Tues March 12, 2013 11PM - (65% of overall grade):
● Writeup - Thursday March 14, 2013, 11PM - (25% of overall grade)

“Scheduling note”

● “We now return to our interrupted program” on graphs
● Last “graph lecture” was lecture 16

● Shortest-path problem
● Dijkstra’s algorithm for graphs with non-negative weights

● Why this strange schedule?
● Needed to do parallelism and concurrency in time for project

3 and homeworks 6 and 7
● But cannot delay all of graphs because of the CSE312 co-

requisite

● So: not the most logical order, but hopefully not a big deal

3/04/2011

Trees

A tree is a graph with exactly one path between any two nodes.

No need for a root, hierarchy, or ordered children.

Spanning Trees

● A simple problem: Given a connected graph G=(V,E), find a
minimal subset of the edges such that the graph is still connected

● A graph G2=(V,E2) such that G2 is connected and removing
any edge from E2 makes G2 disconnected

Spring 2012 CSE332: Data Abstractions

Observations

1. Any solution to this problem is a tree
● Recall a tree does not need a root; just means acyclic
● For any cycle, could remove an edge and still be connected

2. Solution not unique unless original graph was already a tree

3. Problem ill-defined if original graph not connected

4. A tree with |V| nodes has |V|-1 edges
● So every solution to the spanning tree problem has |V|-1

edges

Spring 2012 CSE332: Data Abstractions

3/04/2011

Minimum Spanning Trees
Given an undirected graph G=(V,E), find a graph G'=(V, E') such

that:
● G' is a spanning tree.
● Sum of edge weights in G'
 is minimal

Applications:
● Example: Electrical wiring for a house or clock wires on a chip
● Example: A road network if you cared about asphalt cost rather

than travel time

G’ is a minimum
spanning tree.

An application

Bell systems was the telephone company for 100 years.

They want to connect everyone in the US to their telephone
network as cheaply as possible.

3/04/2011

Find the MST
Student Activity

A

C

B

D

F
H

G

E

1
7

6

5
11

4

12

13

2
3

9

10

4

3/04/2011

Two Different Approaches

Prim’s Algorithm
Almost identical to

Dijkstra’s

Kruskals’s
Algorithm

Completely different!
One node, grow

greedily
Forest of MSTs,

Union them together.
I wonder how to union…

3/04/2011

Prim’s algorithm

Idea: Grow a tree by picking a vertex from the unknown set that
has the smallest cost. Here cost = cost of the edge that
connects that vertex to the known set. Pick the vertex with the
smallest cost that connects “known” to “unknown.”

A node-based greedy algorithm
Builds MST by greedily adding nodes

G

v

known

Prim’s Algorithm vs. Dijkstra’s

Recall:

Dijkstra picked the unknown vertex with smallest cost where
cost = distance to the source.

Prim’s pick the unknown vertex with smallest cost where
cost = distance from this vertex to the known set (in other words,
the cost of the smallest edge connecting this vertex to the known
set)

● Otherwise identical
● Compare to slides in lecture 16!

3/04/2011

Prim’s Algorithm for MST

3/04/2011

1. For each node v, set v.cost = ∞ and v.known = false
2. Choose any node v. (this is like your “start” vertex in Dijkstra)

a. Mark v as known
b. For each edge (v,u) with weight w:

set u.cost=w and u.prev=v
3. While there are unknown nodes in the graph

c. Select the unknown node v with lowest cost
d. Mark v as known and add (v, v.prev) to output (the MST)
e. For each edge (v,u) with weight w,

 if(w < u.cost) {
 u.cost = w;

 u.prev = v;
 }

Example: Find MST using Prim’s

3/04/2011

A B

C
D

F

E

G

�

�

�

�
�

�

2

1
2

vertex known? cost prev

A ??

B ??

C ??

D ??

E ??

F ??

G ??

5

1
1

1

2 6
5 3

10

�

Example: Find MST using Prim’s

3/04/2011

A B

C
D

F

E

G

0 2

�

2

1
�

�

2

1
2

vertex known? cost prev

A Y 0

B 2 A

C 2 A

D 1 A

E ??

F ??

G ??

5

1
1

1

2 6
5 3

10

Example: Find MST using Prim’s

3/04/2011

A B

C
D

F

E

G

0 2

6

2

1
1

5

2

1
2

vertex known? cost prev

A Y 0

B 2 A

C 1 D

D Y 1 A

E 1 D

F 6 D

G 5 D

5

1
1

1

2 6
5 3

10

Example: Find MST using Prim’s

3/04/2011

A B

C
D

F

E

G

0 2

2

2

1
1

5

2

1
2

vertex known? cost prev

A Y 0

B 2 A

C Y 1 D

D Y 1 A

E 1 D

F 2 C

G 5 D

5

1
1

1

2 6
5 3

10

Example: Find MST using Prim’s

3/04/2011

A B

C
D

F

E

G

0 1

2

2

1
1

3

2

1
2

vertex known? cost prev

A Y 0

B 1 E

C Y 1 D

D Y 1 A

E Y 1 D

F 2 C

G 3 E

5

1
1

1

2 6
5 3

10

Example: Find MST using Prim’s

3/04/2011

A B

C
D

F

E

G

0 1

2

2

1
1

3

2

1
2

vertex known? cost prev

A Y 0

B Y 1 E

C Y 1 D

D Y 1 A

E Y 1 D

F 2 C

G 3 E

5

1
1

1

2 6
5 3

10

Example: Find MST using Prim’s

3/04/2011

A B

C
D

F

E

G

0 1

2

2

1
1

3

2

1
2

vertex known? cost prev

A Y 0

B Y 1 E

C Y 1 D

D Y 1 A

E Y 1 D

F Y 2 C

G 3 E

5

1
1

1

2 6
5 3

10

Example: Find MST using Prim’s

3/04/2011

A B

C
D

F

E

G

0 1

2

2

1
1

3

2

1
2

vertex known? cost prev

A Y 0

B Y 1 E

C Y 1 D

D Y 1 A

E Y 1 D

F Y 2 C

G Y 3 E

5

1
1

1

2 6
5 3

10

3/04/2011

Find MST using
Prim’s v4

v7

v2

v3 v5

v6

v1

Start with V1

2

2

5

4
7

1 10

4 6

3

8

1

V Kwn Distance path

v1

v2

v3

v4

v5

v6

v7

Student Activity

Order Declared Known:
V1

Total Cost:

Prim’s Analysis

● Correctness ??
● A bit tricky
● Intuitively similar to Dijkstra
● Might return to this time permitting (unlikely)

● Run-time
● Same as Dijkstra
● O(|E|log |V|) using a heap

3/04/2011

3/04/2011

Kruskal’s MST Algorithm

Idea: Grow a forest out of edges that do not create a cycle. Pick an
edge with the smallest weight.

G=(V,E)

v

3/04/2011

Kruskal’s Algorithm for MST

An edge-based greedy algorithm
Builds MST by greedily adding edges

1. Initialize with
● empty MST
● all vertices marked unconnected
● all edges unmarked

2. While there are still unmarked edges
a. Pick the lowest cost edge (u,v) and mark it
b. If u and v are not already connected, add (u,v) to the MST

and mark u and v as connected to each other

Maze construction used random edge
order.

Otherwise the same!

3/04/2011

Aside: Union-Find aka Disjoint Set ADT
● Union(x,y) – take the union of two sets named x and y

● Given sets: {3,5,7} , {4,2,8}, {9}, {1,6}
● Union(5,1)
 Result: {3,5,7,1,6}, {4,2,8}, {9},
To perform the union operation, we replace sets x and y by (x ∪

y)

● Find(x) – return the name of the set containing x.
● Given sets: {3,5,7,1,6}, {4,2,8}, {9},
● Find(1) returns 5
● Find(4) returns 8

● We can do Union in constant time.
● We can get Find to be amortized constant time

(worst case O(log n) for an individual Find operation).

3/04/2011

Kruskal’s pseudo code
void Graph::kruskal(){
 int edgesAccepted = 0;
 DisjSet s(NUM_VERTICES);

 while (edgesAccepted < NUM_VERTICES – 1){
 e = smallest weight edge not deleted yet;
 // edge e = (u, v)
 uset = s.find(u);
 vset = s.find(v);
 if (uset != vset){
 edgesAccepted++;
 s.unionSets(uset, vset);
 }
 }
}

2|E| finds

|V| unions

|E| heap ops

On heap of
edges

Deletemin =
log |E|

One for each
vertex in the

edge
Find = log |V|

O(|E|log|E|) = O(|E|log|V|)
b/c log |E| < log|V|2 = 2log|V|

Sort of ignore this loop in calc run-time…

Union = O(1)|E| log |E| + 2|E|log|V|+|V|

3/04/2011

Find MST using Kruskal’s

A

C

B

D

F H

G

E

2 2 3

2 1

4

10

8

1
94

2

7

Student Activity

Total Cost:

● Now find the MST using Prim’s method.
● Under what conditions will these methods give the same result?

Example: Find MST using Kruskal’s

3/04/2011

A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output:

Note: At each step, the union/find sets are the trees in the
forest

Example: Find MST using Kruskal’s

3/04/2011

A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D)

Note: At each step, the union/find sets are the trees in the
forest

Example: Find MST using Kruskal’s

3/04/2011

A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D)

Note: At each step, the union/find sets are the trees in the
forest

Example: Find MST using Kruskal’s

3/04/2011

A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E)

Note: At each step, the union/find sets are the trees in the
forest

Example: Find MST using Kruskal’s

3/04/2011

A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the
forest

Example: Find MST using Kruskal’s

3/04/2011

A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the
forest

Example: Find MST using Kruskal’s

3/04/2011

A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the
forest

Example: Find MST using Kruskal’s

3/04/2011

A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the
forest

Example: Find MST using Kruskal’s

3/04/2011

A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F), (E,G)

Note: At each step, the union/find sets are the trees in the
forest

Correctness

Kruskal’s algorithm is clever, simple, and efficient
● But does it generate a minimum spanning tree?
● How can we prove it?

First: it generates a spanning tree
● Intuition: Graph started connected and we added every edge

that did not create a cycle
● Proof by contradiction: Suppose u and v are disconnected in

Kruskal’s result. Then there’s a path from u to v in the initial
graph with an edge we could add without creating a cycle.
But Kruskal would have added that edge. Contradiction.

Second: There is no spanning tree with lower total cost…

3/04/2011

The inductive proof set-up

Let F (stands for “forest”) be the set of edges Kruskal has added at
some point during its execution.

Claim: F is a subset of one or more MSTs for the graph
(Therefore, once |F|=|V|-1, we have an MST.)

Proof: By induction on |F|

 Base case: |F|=0: The empty set is a subset of all MSTs

 Inductive case: |F|=k+1: By induction, before adding the (k+1)th
edge (call it e), there was some MST T such that F-{e} ⊆ T …

3/04/2011

Staying a subset of some MST

Two disjoint cases:
● If {e} ⊆ T: Then F ⊆ T and we’re done
● Else e forms a cycle with some simple path (call it p) in T

● Must be since T is a spanning tree

3/04/2011

Claim: F is a subset of one or
more MSTs for the graph

So far: F-{e} ⊆ T:

Staying a subset of some MST

● There must be an edge e2 on p such that e2 is not in F
● Else Kruskal would not have added e

● Claim: e2.weight == e.weight

3/04/2011

Claim: F is a subset of one or
more MSTs for the graph

So far: F-{e} ⊆ T and
 e forms a cycle with p ⊆ T

e

Staying a subset of some MST

● Claim: e2.weight == e.weight
● If e2.weight > e.weight, then T is not an MST because

T-{e2}+{e} is a spanning tree with lower cost: contradiction
● If e2.weight < e.weight, then Kruskal would have already

considered e2. It would have added it since T has no cycles
and F-{e} ⊆ T. But e2 is not in F: contradiction

3/04/2011

Claim: F is a subset of one or
more MSTs for the graph

So far: F-{e} ⊆ T
 e forms a cycle with p ⊆ T
 e2 on p is not in F

e
e2

Staying a subset of some MST

● Claim: T-{e2}+{e} is an MST
● It’s a spanning tree because p-{e2}+{e} connects the same

nodes as p
● It’s minimal because its cost equals cost of T, an MST

● Since F ⊆ T-{e2}+{e}, F is a subset of one or more MSTs
Done.

3/04/2011

Claim: F is a subset of one or
more MSTs for the graph

So far: F-{e} ⊆ T
 e forms a cycle with p ⊆ T
 e2 on p is not in F
 e2.weight == e.weight

e
e2

