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Announcements

● Homework 7 – due NOW at the BEGINNING of lecture!
● Homework 8 – coming soon!

● Project 3 – the last programming project!
● ALL Code - Tues March 12, 2013 11PM - (65% of overall grade):
● Writeup - Thursday March 14, 2013, 11PM - (25% of overall grade)
 

 



“Scheduling note”

● “We now return to our interrupted program” on graphs
● Last “graph lecture” was lecture 16

● Shortest-path problem
● Dijkstra’s algorithm for graphs with non-negative weights

● Why this strange schedule?
● Needed to do parallelism and concurrency in time for project 

3 and homeworks 6 and 7
● But cannot delay all of graphs because of the CSE312 co-

requisite

● So: not the most logical order, but hopefully not a big deal
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Trees

A tree is a graph with exactly one path between any two nodes.

No need for a root, hierarchy, or ordered children.



Spanning Trees

● A simple problem: Given a connected  graph G=(V,E), find a 
minimal subset of the edges such that the graph is still connected

● A graph G2=(V,E2) such that G2 is connected and removing 
any edge from E2 makes G2 disconnected
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Observations

1. Any solution to this problem is a tree
● Recall a tree does not need a root; just means acyclic
● For any cycle, could remove an edge and still be connected

2. Solution not unique unless original graph was already a tree

3. Problem ill-defined if original graph not connected

4. A tree with |V| nodes has |V|-1 edges
● So every solution to the spanning tree problem has |V|-1 

edges
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Minimum Spanning Trees
Given an undirected graph G=(V,E), find a graph G'=(V, E') such 

that:
● G' is a spanning tree.
● Sum of edge weights in G'
    is minimal

Applications: 
● Example: Electrical wiring for a house or clock wires on a chip
● Example: A road network if you cared about asphalt cost rather 

than travel time

G’ is a minimum 
spanning tree.

 



An application

Bell systems was the telephone company for 100 years.

They want to connect everyone in the US to their telephone 
network as cheaply as possible. 
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Find the MST
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Two Different Approaches

Prim’s Algorithm
Almost identical to 

Dijkstra’s

Kruskals’s 
Algorithm

Completely different!
One node, grow 

greedily
Forest of MSTs,

Union them together.
I wonder how to union…
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Prim’s algorithm

Idea: Grow a tree by picking a vertex from the unknown set that 
has the smallest cost.  Here cost = cost of the edge that 
connects that vertex to the known set.  Pick the vertex with the 
smallest cost that connects “known” to “unknown.”

A node-based greedy algorithm
Builds MST by greedily adding nodes

G

v

known



Prim’s Algorithm vs. Dijkstra’s

Recall: 

Dijkstra picked the unknown vertex with smallest cost where 
cost = distance to the source. 

Prim’s pick the unknown vertex with smallest cost where 
cost = distance from this vertex to the known set (in other words, 
the cost of the smallest edge connecting this vertex to the known 
set)

● Otherwise identical
● Compare to slides in lecture 16!
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Prim’s Algorithm for MST
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1. For each node v, set  v.cost = ∞ and v.known = false
2. Choose any node v. (this is like your “start” vertex in Dijkstra)

a. Mark v as known
b. For each edge (v,u) with weight w:

set u.cost=w and u.prev=v
3. While there are unknown nodes in the graph

c. Select the unknown node v with lowest cost
d. Mark v as known and add (v, v.prev) to output (the MST)
e. For each edge (v,u) with weight w,

    if(w < u.cost) {
        u.cost = w;

    u.prev = v;
    }



Example: Find MST using Prim’s
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Example: Find MST using Prim’s

3/04/2011  

A B

C
D

F

E

G

0 2

�

2

1
�

�

2

1
2

vertex known? cost prev

A Y 0

B 2 A

C 2 A

D 1 A

E ??

F ??

G ??

5

1
1

1

2 6
5 3

10



Example: Find MST using Prim’s
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Example: Find MST using Prim’s
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Example: Find MST using Prim’s
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Example: Find MST using Prim’s
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Example: Find MST using Prim’s
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Example: Find MST using Prim’s
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Find MST using 
Prim’s v4
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Prim’s Analysis

● Correctness ?? 
● A bit tricky
● Intuitively similar to Dijkstra
● Might return to this time permitting (unlikely)

● Run-time
● Same as Dijkstra
● O(|E|log |V|) using a heap
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Kruskal’s MST Algorithm

Idea: Grow a forest out of edges that do not create a cycle.  Pick an 
edge with the smallest weight.

G=(V,E)

v
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Kruskal’s Algorithm for MST

An edge-based greedy algorithm
Builds MST by greedily adding edges

1. Initialize with
● empty MST
● all vertices marked unconnected
● all edges unmarked

2. While there are still unmarked edges
a. Pick the lowest cost edge (u,v) and mark it
b. If u and v are not already connected, add (u,v) to the MST 

and mark u and v as connected to each other

Maze construction used random edge 
order.

Otherwise the same!
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Aside: Union-Find aka Disjoint Set ADT
● Union(x,y) – take the union of two sets named x and y

● Given sets: {3,5,7} , {4,2,8}, {9}, {1,6}
● Union(5,1)
   Result: {3,5,7,1,6}, {4,2,8}, {9}, 
To perform the union operation, we replace sets x and y by  (x ∪ 

y)

● Find(x) – return the name of the set containing x.
● Given sets: {3,5,7,1,6}, {4,2,8}, {9}, 
● Find(1) returns 5
● Find(4) returns 8

● We can do Union in constant time. 
● We can get Find to be amortized constant time 

(worst case O(log n) for an individual Find operation).
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Kruskal’s pseudo code
void Graph::kruskal(){
  int edgesAccepted = 0;
  DisjSet s(NUM_VERTICES);

  while (edgesAccepted < NUM_VERTICES – 1){
    e = smallest weight edge not deleted yet;
    // edge e = (u, v)
    uset = s.find(u);
    vset = s.find(v);
    if (uset != vset){
      edgesAccepted++;
      s.unionSets(uset, vset);
    }
  }
}

2|E| finds

|V| unions

|E| heap ops

On heap of 
edges

Deletemin = 
log |E|

One for each 
vertex in the 

edge
Find = log |V|

O(|E|log|E|) = O(|E|log|V|)
b/c log |E| < log|V|2 = 2log|V|

Sort of ignore this loop in calc run-time…

Union = O(1)|E| log |E| + 2|E|log|V|+|V|
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Find MST using Kruskal’s
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● Now find the MST using Prim’s method.
● Under what conditions will these methods give the same result?

 



Example: Find MST using Kruskal’s 
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Note: At each step, the union/find sets are the trees in the 
forest



Example: Find MST using Kruskal’s 
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Note: At each step, the union/find sets are the trees in the 
forest



Example: Find MST using Kruskal’s 
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Note: At each step, the union/find sets are the trees in the 
forest



Example: Find MST using Kruskal’s 
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Output: (A,D), (C,D), (B,E)

Note: At each step, the union/find sets are the trees in the 
forest



Example: Find MST using Kruskal’s 
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Note: At each step, the union/find sets are the trees in the 
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Example: Find MST using Kruskal’s
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Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the 
forest



Example: Find MST using Kruskal’s 
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Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the 
forest



Example: Find MST using Kruskal’s 
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Note: At each step, the union/find sets are the trees in the 
forest



Example: Find MST using Kruskal’s
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Note: At each step, the union/find sets are the trees in the 
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Correctness

Kruskal’s algorithm is clever, simple, and efficient
● But does it generate a minimum spanning tree?
● How can we prove it?

First: it generates a spanning tree
● Intuition: Graph started connected and we added every edge 

that did not create a cycle
● Proof by contradiction: Suppose u and v are disconnected in 

Kruskal’s result.  Then there’s a path from u to v in the initial 
graph with an edge we could add without creating a cycle.  
But Kruskal would have added that edge.  Contradiction.

Second: There is no spanning tree with lower total cost…
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The inductive proof set-up

Let F (stands for “forest”) be the set of edges Kruskal has added at 
some point during its execution.

Claim: F is a subset of one or more MSTs for the graph
(Therefore, once |F|=|V|-1, we have an MST.)

Proof: By induction on |F|

  Base case: |F|=0: The empty set is a subset of all MSTs

  Inductive case: |F|=k+1: By induction, before adding the (k+1)th 
edge (call it e), there was some MST T such that F-{e} ⊆ T …

3/04/2011  



Staying a subset of some MST

Two disjoint cases: 
● If {e} ⊆ T: Then F ⊆ T and we’re done
● Else e forms a cycle with some simple path (call it p) in T

● Must be since T is a spanning tree
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Claim: F is a subset of one or 
more MSTs for the graph

So far:    F-{e} ⊆ T:  



Staying a subset of some MST

● There must be an edge e2 on p such that e2 is not in F  
● Else Kruskal would not have added e

● Claim: e2.weight == e.weight
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Claim: F is a subset of one or 
more MSTs for the graph

So far:    F-{e} ⊆ T and 
     e forms a cycle with p ⊆ T

e



Staying a subset of some MST

● Claim: e2.weight == e.weight
● If e2.weight > e.weight, then T is not an MST because 

T-{e2}+{e} is a spanning tree with lower cost: contradiction
● If e2.weight < e.weight, then Kruskal would have already 

considered e2.  It would have added it since T has no cycles 
and F-{e} ⊆ T.  But e2 is not in F: contradiction 
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Claim: F is a subset of one or 
more MSTs for the graph

So far:    F-{e} ⊆ T 
   e forms a cycle with p ⊆ T 
   e2 on p is not in F

e
e2



Staying a subset of some MST

● Claim:  T-{e2}+{e} is an MST
● It’s a spanning tree because p-{e2}+{e} connects the same 

nodes as p
● It’s minimal because its cost equals cost of T, an MST

● Since F ⊆ T-{e2}+{e},   F is a subset of one or more MSTs 
Done.

3/04/2011  

Claim: F is a subset of one or 
more MSTs for the graph

So far:    F-{e} ⊆ T 
   e forms a cycle with p ⊆ T 
   e2 on p is not in F
   e2.weight == e.weight

e
e2


