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• Asymptotic Analysis 

• Homework Tips & Questions 
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Bugs & Testing 

• Software Bugs   
 

- Error in a computer   

  program 

 

- Causes program to  

  behave in unexpected   

  ways 

 

   



Bugs & Testing 

• Why Testing?   
 

    Bugs can be costly 
 

   - Cost points in homework 

   - Can cost $$$ and even life (Therac-25) 
  

   Interesting Bug References 
   - List of bugs             http://en.wikipedia.org/wiki/List_of_software_bugs  

   - History’s /worst        http://www.wired.com/software/coolapps/news/2005/11/69355?currentPage=all  

   - Bugs of the month   http://www.gimpel.com/html/bugs.htm  
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Bugs & Testing 

• Reverse.java  

   does not test your stack!! 
 
 

   - Stack can still have lots of bugs 

     when working perfectly with Reverse.java 

 

   - Some extreme case in past quarter: 

     it only worked with Reverse.java 

     (Not a good stack!) 
  

    



Bugs & Testing 

• Tips for Testing  
 
 

   - Make sure program meets the spec 

 

   - Test if each method works independently 

 

   - Test if methods work together 

 

   - Test for edge cases 

    



Bugs & Testing 

• Make sure program meets the spec 
 

   - What is wrong with this implementation? 
 

  public class ListStack implements DStack { 

   private LinkedList<Double> myStack; 

 

   public ListStack() { 

    myStack = new LinkedList<Double>();  

   }  

   public void push(double d) { 

    myStack.add(d); 

   } 

   … 

  } 

    



Bugs & Testing 

• Test if each method works 
 

 

   - Four public methods 
 

 boolean isEmpty() 

 True if no elements, false otherwise 

 void push(E elem) 

 Add element on top of stack 

 E pop() 

     Remove & return top element, exception when empty 

 E peek() 
       Return (but don’t remove) top element, exception when empty 

 
 

   



Bugs & Testing 

• Test if each method works 
 

 

   Thorough commenting can help  

 

   - Think about what each method 

      is supposed to do 

 

   - Check if the method actually does 

     what you think it should do 
 

 

   



Bugs & Testing 

• Test if methods work together 
 

 

   - Should work in any order 
 

      stack.push(3.3) 

  stack.isEmpty() 

   stack.push(9.3) 

   stack.peek() 

   stack.pop() 

   stack.push(100) 

   stack.push(4343) 

  … 
 

 

   



Bugs & Testing 

• Test for edge cases 
 

 

   - Empty stack 

 

   - Push after resizing 

 

   - Anything else? 
 

  
 

 

   



Bugs & Testing 

• Testing tools: JUnit Testing 

 

   - Not required for Project 1 

 

   - Required for Project 2 

 

   - Covered in section next week 
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Induction Review 

• Proof by Induction 
 

   - Prove that the first statement in the  

     infinite sequence of statements is true 

     (Base case) 
 

   - Prove that if any one statement in the  

     infinite sequence of statements is true,  

     then so is the next one. 

     (Inductive case) 

  
 

       



Induction Review 

• Proof by Induction 

   To prove statement P(n), 
 

 - Base Case: 
 

    Prove that P(1) is true 

 

 - Inductive Case:  
 

        Assuming P(k) is true, 

     prove that P(k+1) is true 
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Recurrence Relations 

• Recursively defines a Sequence 
 

   - Example:  T(n) = T(n-1) + 3,   T(1) = 5 

                                 ^ Has T(x) in definition 

 

• Solving Recurrence Relation  
 

      - Eliminate recursive part in definition 

     = Find “Closed Form” 

   -  Example:  T(n) = 3n + 2 



Recurrence Relations 

• Expansion Method example  
 

      - Solve T(n) = T(n-1) + 2n – 1,    T(1) = 1 

 

     T(n)    = T(n-1) + 2n – 1 

     T(n-1) = T([n-1]-1) + 2[n-1] – 1  

                = T(n-2) + 2(n-1) – 1 

     T(n-2) = T([n-2]-1) + 2[n-2] – 1  

                = T(n-3) + 2(n-2) – 1 

 



Recurrence Relations 

• Expansion Method example  
 

     T(n)    = T(n-1) + 2n – 1 

     T(n-1) = T(n-2) + 2(n-1) – 1 

     T(n-2) = T(n-3) + 2(n-2) – 1 

 

     T(n)    = [T(n-2) + 2(n-1) – 1] + 2n – 1 

                = T(n-2) + 2(n-1) + 2n – 2 

     T(n)    = [T(n-3) + 2(n-2) – 1] + 2(n-1) + 2n – 2 

                = T(n-3) + 2(n-2) + 2(n-1) + 2n – 3 

                 

 

     

 



Recurrence Relations 

• Expansion Method example  
 

     T(n)    = T(n-1) + 2n – 1 

     T(n)    = T(n-2) + 2(n-1) + 2n – 2 

     T(n)    = T(n-3) + 2(n-2) + 2(n-1) + 2n – 3 

                … 

     T(n)    = T(n-k) + [2(n-(k-1)) + … + 2(n-1) + 2n] – k 

               = T(n-k) + [2(n-k+1) + … + 2(n-1) + 2n] – k 

 

     

 



Recurrence Relations 

• Expansion Method example  
 

    T(n)   = T(n-k) + [2(n-k+1) + … + 2(n-1) + 2n] – k 

 

     When expanded all the way down, T(n-k) = T(1) 

      n-k = 1, k = n-1 

     

    T(n)   = T(n-[n-1]) + [2(n-[n-1]+1) + … + 2(n-1)  

                 + 2n] – [n-1] 

              = T(1) + [2(2) + … + 2(n-1) + 2n] – n + 1   

 

 



Recurrence Relations 

• Expansion Method example  
 

    T(n)   = T(1) + [2(2) + … + 2(n-1) + 2n] – n + 1   

              = T(1) + 2[2 + … + (n-1) + n] – n + 1  

              = T(1) + 2[(n+1)(n/2) -1] – n + 1  

              = T(1) + (n+1)(n) - 2 – n + 1  

              = T(1) + (n2+n) – n - 1  

              = T(1) + n2 – 1  

              = 1 + n2 – 1 

              = n2   



Recurrence Relations 

• Expansion Method example  Check it!  
 

     T(n)   = T(n-1) + 2n – 1,    T(1) = 1     

     T(n)   = n2  

 

      T(1) = 1                                      same as 12 

      T(2)   = T(1) + 2(2) – 1 = 4         same as 22 

      T(3)   = T(2) + 2(3) – 1 = 9         same as 32 

      T(4)   = T(3) + 2(4) – 1 = 16       same as 42 
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Asymptotic Analysis 

• Describe Limiting behavior of F(n) 
 

   - Characterize growth rate of F(n)  

      - Use O(g(n)), Ω(g(n)), Θ(g(n)) for set of functions  

     with asymptotic behavior , ,  &   to g(n)  
 

• Upper Bound:   O(n) 
 

   f(n) ∈  O(g(n))  if and only if  

   there exist positive constants  
   c and n0 such that 
   f(n)   c*g(n) for all n0  n 

 

log n ∈  O(n) 



Asymptotic Analysis 

• Lower Bound:   Ω(n) 
 

  f(n) ∈  Ω(g(n))  if and only  

  if there exist positive constants  
  c and n0 such that 
  c*g(n)  f(n) for all n0  n 

 

• Tight Bound:   Θ(n) 
 

   f(n) ∈  Θ(g(n))  if and only if 

   f(n) ∈  Ω(g(n))  and   

   f(n) ∈  O(g(n))  

 n ∈  Ω(log n) 

5*log10 n ∈  Θ(log n) 



Asymptotic Analysis 

• Ordering Growth rates (k = constant) 
    - Ignore Low-Order terms & Coefficients 

 

O(k)          constant  
 

O(log n)    logarithmic 

                                                              Increasing 

O(n)          linear                                   Growth rate 
 

O(nk)        polynomial 
 

O(kn)        exponential (k > 1) 



Asymptotic Analysis 

• Ordering Growth rates  
 



Asymptotic Analysis 

• Ordering Growth rates  

- logkn  ∈ O(nb)   if  1 < k & 0 < b 

- nk        ∈ O(bn)   if  0 < k & 1 < b  
 

• Ordering Example 

     2n100 + 10n                                                          

     2n/100  + 2n/270                                                                                  

     1000n + log8 n                                       

     23785n1/2                                                                                                

     1000 log10n + 1n/300                                            

  

 
 

n100 

2n/100 

n 

n1/2 

log10n 1 

2 

3 

5 

4 



Asymptotic Analysis 

• Proof Example:   f(n) ∈  O(g(n)) 
 

    - Prove or disprove nlog n ∈  O(3n)  
 

      nlog n      ∈  O(3n)  

      nlog n         c*(3n),    for  0 < c &&  0 < n0  n 

      (1/3)log n    c 

    
      but as n → ∞, log n → ∞ 
      Finite constant c always  greater than log n     

      cannot exist, no matter what n0 we choose 
 

      nlog n ∉   O(3n)  



 
Homework Tips 

 



Homework Tips 

• Problem #1 
 

   - Use formula in the book 

     (You don’t have to derive it by yourself) 

 

• Problem #2 
 

      - Use following rules: 

     1.                           which means 

 

     2.     

     



Homework Tips 

• Problem #3 
 

   - f(n) x 10-6 sec     t sec,  solve for n 

 

• Problem #4  <= Not in this HW 
 

      - Remember that when you are proving 

     P(k+1), you are assuming P(k) 

     no matter how silly it is! 

   - Find flaw in inductive reasoning 



Homework Tips 

• Problem #5 
 

   - Use definitions and show you can/cannot 

     find the constant c 

 

• Problem #6 
 

      - Analyze runtime of each loop & merge 

     when appropriate 

   - Practice finding exact runtime when you can 

   - Think about maximum iteration of each loop 


