
CSE332: Data Abstractions
Section 2

HyeIn Kim

Spring 2013

Section Agenda

• Bugs & Testing

• Induction Review

• Recurrence Relations

• Asymptotic Analysis

• Homework Tips & Questions

Bugs & Testing

Bugs & Testing

• Software Bugs

- Error in a computer

 program

- Causes program to

 behave in unexpected

 ways

Bugs & Testing

• Why Testing?

 Bugs can be costly

 - Cost points in homework

 - Can cost $$$ and even life (Therac-25)

 Interesting Bug References
 - List of bugs http://en.wikipedia.org/wiki/List_of_software_bugs

 - History’s /worst http://www.wired.com/software/coolapps/news/2005/11/69355?currentPage=all

 - Bugs of the month http://www.gimpel.com/html/bugs.htm

http://en.wikipedia.org/wiki/List_of_software_bugs
http://en.wikipedia.org/wiki/List_of_software_bugs
http://en.wikipedia.org/wiki/List_of_software_bugs
http://www.wired.comsoftware/coolapps/news/2005/11/69355?currentPage=all
http://www.wired.comsoftware/coolapps/news/2005/11/69355?currentPage=all
http://www.wired.comsoftware/coolapps/news/2005/11/69355?currentPage=all
http://www.wired.comsoftware/coolapps/news/2005/11/69355?currentPage=all
http://www.wired.comsoftware/coolapps/news/2005/11/69355?currentPage=all
http://www.wired.comsoftware/coolapps/news/2005/11/69355?currentPage=all
http://www.wired.comsoftware/coolapps/news/2005/11/69355?currentPage=all
http://www.gimpel.com/html/bugs.htm
http://www.gimpel.com/html/bugs.htm
http://www.gimpel.com/html/bugs.htm

Bugs & Testing

• Reverse.java

 does not test your stack!!

 - Stack can still have lots of bugs

 when working perfectly with Reverse.java

 - Some extreme case in past quarter:

 it only worked with Reverse.java

 (Not a good stack!)

Bugs & Testing

• Tips for Testing

 - Make sure program meets the spec

 - Test if each method works independently

 - Test if methods work together

 - Test for edge cases

Bugs & Testing

• Make sure program meets the spec

 - What is wrong with this implementation?

 public class ListStack implements DStack {

 private LinkedList<Double> myStack;

 public ListStack() {

 myStack = new LinkedList<Double>();

 }

 public void push(double d) {

 myStack.add(d);

 }

 …

 }

Bugs & Testing

• Test if each method works

 - Four public methods

 boolean isEmpty()

 True if no elements, false otherwise

 void push(E elem)

 Add element on top of stack

 E pop()

 Remove & return top element, exception when empty

 E peek()
 Return (but don’t remove) top element, exception when empty

Bugs & Testing

• Test if each method works

 Thorough commenting can help

 - Think about what each method

 is supposed to do

 - Check if the method actually does

 what you think it should do

Bugs & Testing

• Test if methods work together

 - Should work in any order

 stack.push(3.3)

 stack.isEmpty()

 stack.push(9.3)

 stack.peek()

 stack.pop()

 stack.push(100)

 stack.push(4343)

 …

Bugs & Testing

• Test for edge cases

 - Empty stack

 - Push after resizing

 - Anything else?

Bugs & Testing

• Testing tools: JUnit Testing

 - Not required for Project 1

 - Required for Project 2

 - Covered in section next week

Induction Review

Induction Review

• Proof by Induction

 - Prove that the first statement in the

 infinite sequence of statements is true

 (Base case)

 - Prove that if any one statement in the

 infinite sequence of statements is true,

 then so is the next one.

 (Inductive case)

Induction Review

• Proof by Induction

 To prove statement P(n),

 - Base Case:

 Prove that P(1) is true

 - Inductive Case:

 Assuming P(k) is true,

 prove that P(k+1) is true

Recurrence Relations

Recurrence Relations

• Recursively defines a Sequence

 - Example: T(n) = T(n-1) + 3, T(1) = 5

 ^ Has T(x) in definition

• Solving Recurrence Relation

 - Eliminate recursive part in definition

 = Find “Closed Form”

 - Example: T(n) = 3n + 2

Recurrence Relations

• Expansion Method example

 - Solve T(n) = T(n-1) + 2n – 1, T(1) = 1

 T(n) = T(n-1) + 2n – 1

 T(n-1) = T([n-1]-1) + 2[n-1] – 1

 = T(n-2) + 2(n-1) – 1

 T(n-2) = T([n-2]-1) + 2[n-2] – 1

 = T(n-3) + 2(n-2) – 1

Recurrence Relations

• Expansion Method example

 T(n) = T(n-1) + 2n – 1

 T(n-1) = T(n-2) + 2(n-1) – 1

 T(n-2) = T(n-3) + 2(n-2) – 1

 T(n) = [T(n-2) + 2(n-1) – 1] + 2n – 1

 = T(n-2) + 2(n-1) + 2n – 2

 T(n) = [T(n-3) + 2(n-2) – 1] + 2(n-1) + 2n – 2

 = T(n-3) + 2(n-2) + 2(n-1) + 2n – 3

Recurrence Relations

• Expansion Method example

 T(n) = T(n-1) + 2n – 1

 T(n) = T(n-2) + 2(n-1) + 2n – 2

 T(n) = T(n-3) + 2(n-2) + 2(n-1) + 2n – 3

 …

 T(n) = T(n-k) + [2(n-(k-1)) + … + 2(n-1) + 2n] – k

 = T(n-k) + [2(n-k+1) + … + 2(n-1) + 2n] – k

Recurrence Relations

• Expansion Method example

 T(n) = T(n-k) + [2(n-k+1) + … + 2(n-1) + 2n] – k

 When expanded all the way down, T(n-k) = T(1)

 n-k = 1, k = n-1

 T(n) = T(n-[n-1]) + [2(n-[n-1]+1) + … + 2(n-1)

 + 2n] – [n-1]

 = T(1) + [2(2) + … + 2(n-1) + 2n] – n + 1

Recurrence Relations

• Expansion Method example

 T(n) = T(1) + [2(2) + … + 2(n-1) + 2n] – n + 1

 = T(1) + 2[2 + … + (n-1) + n] – n + 1

 = T(1) + 2[(n+1)(n/2) -1] – n + 1

 = T(1) + (n+1)(n) - 2 – n + 1

 = T(1) + (n2+n) – n - 1

 = T(1) + n2 – 1

 = 1 + n2 – 1

 = n2

Recurrence Relations

• Expansion Method example Check it!

 T(n) = T(n-1) + 2n – 1, T(1) = 1

 T(n) = n2

 T(1) = 1 same as 12

 T(2) = T(1) + 2(2) – 1 = 4 same as 22

 T(3) = T(2) + 2(3) – 1 = 9 same as 32

 T(4) = T(3) + 2(4) – 1 = 16 same as 42

Asymptotic Analysis

Asymptotic Analysis

• Describe Limiting behavior of F(n)

 - Characterize growth rate of F(n)

 - Use O(g(n)), Ω(g(n)), Θ(g(n)) for set of functions

 with asymptotic behavior , , & to g(n)

• Upper Bound: O(n)

 f(n) ∈ O(g(n)) if and only if

 there exist positive constants
 c and n0 such that
 f(n) c*g(n) for all n0 n

log n ∈ O(n)

Asymptotic Analysis

• Lower Bound: Ω(n)

 f(n) ∈ Ω(g(n)) if and only

 if there exist positive constants
 c and n0 such that
 c*g(n) f(n) for all n0 n

• Tight Bound: Θ(n)

 f(n) ∈ Θ(g(n)) if and only if

 f(n) ∈ Ω(g(n)) and

 f(n) ∈ O(g(n))

 n ∈ Ω(log n)

5*log10 n ∈ Θ(log n)

Asymptotic Analysis

• Ordering Growth rates (k = constant)
 - Ignore Low-Order terms & Coefficients

O(k) constant

O(log n) logarithmic

 Increasing

O(n) linear Growth rate

O(nk) polynomial

O(kn) exponential (k > 1)

Asymptotic Analysis

• Ordering Growth rates

Asymptotic Analysis

• Ordering Growth rates

- logkn ∈ O(nb) if 1 < k & 0 < b

- nk ∈ O(bn) if 0 < k & 1 < b

• Ordering Example

 2n100 + 10n

 2n/100 + 2n/270

 1000n + log8 n

 23785n1/2

 1000 log10n + 1n/300

n100

2n/100

n

n1/2

log10n 1

2

3

5

4

Asymptotic Analysis

• Proof Example: f(n) ∈ O(g(n))

 - Prove or disprove nlog n ∈ O(3n)

 nlog n ∈ O(3n)

 nlog n c*(3n), for 0 < c && 0 < n0 n

 (1/3)log n c

 but as n → ∞, log n → ∞
 Finite constant c always greater than log n

 cannot exist, no matter what n0 we choose

 nlog n ∉ O(3n)

Homework Tips

Homework Tips

• Problem #1

 - Use formula in the book

 (You don’t have to derive it by yourself)

• Problem #2

 - Use following rules:

 1. which means

 2.

Homework Tips

• Problem #3

 - f(n) x 10-6 sec t sec, solve for n

• Problem #4 <= Not in this HW

 - Remember that when you are proving

 P(k+1), you are assuming P(k)

 no matter how silly it is!

 - Find flaw in inductive reasoning

Homework Tips

• Problem #5

 - Use definitions and show you can/cannot

 find the constant c

• Problem #6

 - Analyze runtime of each loop & merge

 when appropriate

 - Practice finding exact runtime when you can

 - Think about maximum iteration of each loop

