
CSE 326: Data Structures

Java Generics & JUnit 4
Section notes, 7/2/2009

slides originally by Hal Perkins

Type-Safe Containers

The pre-Java 5 idiom: use “Object”

public class Bag {
 private Object item;
 public void setItem(Object x) { item = x; }
 public Object getItem() { return item; }
}

Now we can create and use instances.

Bag b = new Bag();
b.setItem("How about that?");
String contents = (String)b.getItem();

• Idea – a class or interface can have a type parameter:
public class Bag<E> {

private E item;
public void setItem(E x) { item = x; }
public E getItem() { return item; }

}

• Given such a type, we can create and use instances:
Bag<String> b = new Bag<String>();
b.setItem(“How about that?”);
String contents = b.getItem();

Type-Safe Containers

Why?

• Main advantage is compile-time type checking:

• Ensure at compile time that items put in a generic
container have the right type

• No need for a cast to check the types of items
returned; guaranteed by type system

• Underneath, everything is a raw object, but we
don’t have to write the casts explicitly or worry
about type failures

Type Erasure

• Type parameters are a compile-time-only artifact. At runtime, only the
raw types are present

• So, at runtime, the compile-time class Bag<E> is just a Bag (only one
instance of class Bag), and everything added or removed is just an
Object, not a particular E

• Casts, etc. are inserted by compiler as needed, but
guaranteed to succeed if generics rules are obeyed

• Underlying code and JVM is pre-generics Java

• Ugly, but necessary design decision

• Makes it possible for new code that uses generics to interoperate with
old code that doesn’t

• Not how you would do it if you could start over

Specialized Containers
• Suppose we have a bunch of objects that can be

compared to each other, i.e. that implement this
interface:

public interface Comparable<T> {
 public int compareTo(T other);
}

• Example class of Comparable objects:

class OrderedBlob implements Comparable<OrderedBlob> {
…
public int compareTo(OrderedBlob b) { return 0, <0, >0 }

}

07/02/09 6

Container for Comparable
Things

• Suppose we want a container that only holds
objects that are Comparable. Here’s how:

interface SortedCollection <E extends Comparable<E>>

– E must be some type that “extends” (i.e.,
implements) Comparable<E>

� ∴ can use CompareTo(E) in implementation

– This isn’t quite general enough, but it’s in the right
direction

07/02/09 7

Generics & Inheritance
• Next, suppose we have a small class hierarchy

interface Animal {
 // return the name of this animal
 public String getName();
}
public class Cow implements Animal { … }
public class Pig implements Animal { … }

07/02/09 8

Animals as Parameters
• Task: Write a method that prints the names of all animals in a list.

Easy, right?
 public void printNames(List<Animal> zoo) {…}

• Works fine if called with a List<Animal> object
• Type error if called with List<Cow> or List<Pig>!
• Why???

– Issue: List<Cow> is not a subtype of List<Animal> even though Cow is a
subtype of Animal

– So printNames can only accept a list of Animal objects

(not what we want)

07/02/09 9

Aside: Java Arrays
• The rules for generics and subtyping are

different from arrays:
– Cow[] is a subtype of Animal[]

• Historical accident, leads to some type errors
that can’t be detected until runtime

• Example: Is this always safe?
public void haveACow(Animal[] barnyard) {
 barnyard[0] = new Cow();
}

07/02/09 10

Bounded Wildcards
• Idea: specify that the parameter can be a list of

either Animals or any of Animal’s subtypes
public void printNames (List<? extends Animal> zoo) {

for (Animal a: zoo) System.out.println(a.getName());
}

• Works great. This is a bounded wildcard. Any
List<t> works provided that t is Animal or some
subtype of Animal

• Animal is an upper bound for the wildcard
• Almost always what you want if a method

argument that you read from has a
parameterized type

07/02/09 11

Lower Bounds
• There is corresponding syntax for lower bounds:

public void haveACow(List<? super Cow> barnyard) {
barnyard.add(new Cow()); // OK

}
• This is also a wildcard type where Cow is a lower bound.

Actual argument can be List<Cow>, List<Animal>,
List<Object> or any other List whose elements are
supertypes of Cow.
– But not List<Pig>

• Almost always what you want if a method stores into an
argument that has a parameterized type

07/02/09 12

Constraints Revisited
• Recall the type declaration for collection of

Comparable objects:
interface SortedCollection <E extends Comparable<E>>

• Works, but is too restrictive. It requires that E
directly implement Comparable<E>, but that’s not
the only way two E objects can be Comparable.

• Solution:
interface SortedCollection
<E extends Comparable<? super E>>

– Can compare two elements of type E as long as E
extends Comparable<T> where T is any supertype of
E

07/02/09 13

Type Erasure
• Type parameters are a compile-time-only artifact.

At runtime, only the raw types are present
• So, at runtime, the compile-time class Bag<E> is

just a Bag (only one instance of class Bag), and
everything added or removed is just an Object,
not a particular E
– Casts, etc. are inserted by compiler as needed, but

guaranteed to succeed if generics rules are obeyed
– Underlying code and JVM is pre-generics Java

• Ugly, but necessary design decision
– Makes it possible for new code that uses generics to

interoperate with old code that doesn’t
– Not how you would do it if you could start over

07/02/09 14

Type Erasure Consequences
• Code in a class cannot depend on the actual value of

a type parameter at runtime. Examples of problems:
public class Bag<E> {
 public static E makeE() { … } // error – what is E?
 private E oneE; // OK
 private E[] arrayE; // also OK
 public void makeStuff() {
 oneE = new E(); // error – new E() not allowed
 arrayE = new E[]; // error – new E[] also not allowed
 }

 }

07/02/09 15

Type Erasure Consequences

• Code in a class cannot depend on the actual value of
a type parameter at runtime. Examples of problems:

 public class Bag<E> {

 private E item; // OK

 private E[] array; // also OK

 public Bag() {

 item = new E(); // error – new E() not allowed

 array = new E[10]; // error – new E[] also not allowed

 }

 }

But I Need to Make an E[]!!!!

• Various solutions. For simple case, we can use an unchecked
cast of an Object array (which is what it really is underneath
anyway)

E[] stuff = (E[])new Object[size];

• All the other code that uses stuff[] and its elements will work and
typecheck just fine

• Be sure you understand the cause of all unchecked cast
warnings & limit to “safe” situations like this

• More complex solutions if you want more type safety or have
more general requirements – see references for detailed
discussions

Example with “Generic” Array

public class Bag<E> {

 // instance variable

 E[] items;

 // constructor

 public Bag() { items = (E[]) new Object[10]; }

 // methods

 public void store(E item) { items[0] = item; }

 public E get() { return items[0]; }

}

References
• Textbook (Weiss), sec. 1.5.3

• Sun online Java tutorial
java.sun.com/docs/books/tutorial/extra/generics/index.html

• For the truly hard-core:

Java Generics and Collections,
Maurice Naftalin & Philip Wadler, O’Reilly, 2006

The Java Programming Language, 4th ed.,
Arnold, Gosling & Holmes, A-W, 2006

• And for the Language Lawyers in the crowd:

The Java Language Specification, 3rd ed.,
Gosling, Joy, Steele & Bracha, A-W, 2005

Testing & Debugging

• Testing Goals

• Verify that software behaves as expected

• Be able to recheck this as the software evolves

• Debugging

• A controlled experiment to discover what is wrong

• Strategies and questions:
• What’s wrong?

• What do we know is working? How far do we get before something isn’t
right?

• What changed?

(Even if the changed code didn’t produce the bug, it’s fairly likely that some
interaction between the changed code and other code did.)

Unit Tests

• Idea: create small tests that verify individual
properties or operations of objects

• Do constructors and methods do what they are supposed to?

• Do variables and value-returning methods have the expected
values?

• Is the right output produced?

• Lots of small unit tests, each of which test something
specific; not big, complicated tests

• If something breaks, the broken test should be a great clue
about where the problem is

JUnit 4

• Test framework for Java Unit tests

• Idea: implement classes that have JUnit tests

• Each test in the class has the @Test annotation

• Each test performs some computation and then checks
the result

• Optional: method with @Before tag to initialize instance
variables or otherwise prepare for each test

• Optional: method with @After to clean up after each test

• Less commonly used than @Before

Example
import static org.junit.Assert.assertEquals;

import org.junit.Test;

public class CalculatorTest {

 @Test

 public void testAddition() {

 Calculator calc = new Calculator();

 int expected = 7;

 int actual = calc.add(3, 4);

 assertEquals(“adding 3 and 4”, expected, actual);

 }

 ...

}

Running Tests

• From a java program:
– org.junit.JUnitCore.runClasses(TestClass1.class, ...);

• From the command line:

1. Set CLASSPATH appropriately

2. java org.junit.runner.JUnitCore <test class name>

• Using ant. (See ant documentation.)

Exceptions

@Test

public void testDivisionByZero() {

 Calculator calc = new Calculator();

 try { // verify exception thrown

 calc.divide(2, 0);

 fail(“should have thrown an exception”);

 } catch (ArithmeticException e) {

 // do nothing – this is what we expect

 }

}

Exceptions (Alternatively)

@Test (expected = ArithmeticException.class)

public void testDivisionByZero() {

 Calculator calc = new Calculator();

 calc.divide(2, 0);

}

What Kinds of Checks are Available
• Need to include import static org.junit.Assert.*;

• Look in junit.framework.Assert (JavaDocs on www.junit.org)

assertEquals(expected, actual);
 //works on any type except double; uses .equals() for objects

assertEquals(messsage, expected, actual);
 //all have variations with messages

assertEquals(expected, actual, delta);
 // for doubles to test “close enough”

assertFalse(condition);
assertTrue(condition);

assertNotNull(object);
assertNull(object);

fail();

@Before
• If the tests require some common initial setup, we can

write this once and it is automatically executed before
each test (i.e., each test starts with a fresh setUp)
import org.junit.Before;

public class CalculatorTest {

 private Calculator calc; // calculator object for tests

 /** initialize: repeated before each test */

 @Before

 public void setUp() {

 calc = new Calculator();

 }

 // tests as before, but no local declaration of calc

@After

• Similarly, @After will call a method after each
test.

	CSE 326: Data Structures Java Generics & JUnit 4
	Type-Safe Containers
	Slide 3
	Why?
	Type Erasure
	Specialized Containers
	Container for Comparable Things
	Generics & Inheritance
	Animals as Parameters
	Aside: Java Arrays
	Bounded Wildcards
	Lower Bounds
	Constraints Revisited
	Slide 14
	Slide 15
	Type Erasure Consequences
	But I Need to Make an E[]!!!!
	Example with “Generic” Array
	References
	Testing & Debugging
	Unit Tests
	JUnit 4
	Example
	Slide 24
	Slide 25
	Slide 26
	What Kinds of Checks are Available
	@Before
	Slide 29

