CSE 332: Data Abstractions
Lecture 9: B Trees

Ruth Anderson
Spring 2013
Announcements

- **Project 2** – posted!
 Partner selection due by 11pm Wed 4/24 *at the latest*.
- **Homework 2** – due Friday
Today

- Dictionaries
 - B-Trees
Our goal

- **Problem**: A dictionary with so much data most of it is on disk

- **Desire**: A balanced tree (logarithmic height) that is even shallower than AVL trees so that we can minimize disk accesses and exploit disk-block size

- **A key idea**: Increase the branching factor of our tree
M-ary Search Tree

- Build some sort of search tree with branching factor M:
 - Have an array of sorted children (`Node[]`)
 - Choose M to fit snugly into a disk block (1 access for array)

Perfect tree of height h has $(M^{h+1}-1)/(M-1)$ nodes (textbook, page 4)

What is the **height** of this tree?
What is the worst case running time of **find**?
M-ary Search Tree

- # hops for `find`?
 - If we have a balanced M-ary tree:
 - Approx. $\log_M n$ hops instead of $\log_2 n$ (for balanced BST)
 - Example: $M = 256 (=2^8)$ and $n = 2^{40}$ that’s 5 hops instead of 40 hops
- Sounds good, but how do we decide which branch to take?
 - Binary tree: Less than/greater than node value?
 - M-ary: In range 1? In range 2? In range 3?... In range M?
- Runtime of `find` if balanced: $O(\log_2 M \log_M n)$
 - $\log_M n$ is the height we traverse.
 - $\log_2 M$: At each step, find the correct child branch to take using binary search among the M options!
Questions about M-ary search trees

- What should the order property be?
- How would you **rebalance** (ideally without more disk accesses)?
- Storing **real data** at inner-nodes (like we do in a BST) seems kind of wasteful…
 - To access the node, will have to load the **data** from disk, *even though most of the time we won’t use it!!*
 - Usually we are just “passing through” a node on the way to the value we are actually looking for.

So let’s use the branching-factor idea, but for a **different kind of balanced tree**:
 - **Not** a binary **search tree**
 - But still logarithmic height for any $M > 2$
B+ Trees (we and the book say “B Trees”)

- Two types of nodes: internal nodes & leaves
- Each internal node has room for up to $M-1$ keys and M children
 - No other data; all data at the leaves!
- Order property:
 Subtree between keys a and b contains only data that is $\geq a$ and $< b$ (notice the \geq)
- Leaf nodes have up to L sorted data items
- As usual, we’ll ignore the “along for the ride” data in our examples
 - Remember no data at non-leaves

Remember:
- Leaves store data
- Internal nodes are ‘signposts’
Find

• Different from BST in that we *don’t store data at internal nodes*

• But *find* is still an easy root-to-leaf recursive algorithm
 – At each internal node do binary search on (up to) M-1 keys to find the branch to take
 – At the leaf do binary search on the (up to) L data items

• But to get logarithmic running time, we need a balance condition…
Structure Properties

• Root (special case)
 – If tree has \(\leq L \) items, root is a leaf (occurs when starting up, otherwise unusual)
 – Else has between 2 and \(M \) children

• Internal nodes
 – Have between \(\lceil M/2 \rceil \) and \(M \) children, i.e., at least half full

• Leaf nodes
 – All leaves at the same depth
 – Have between \(\lceil L/2 \rceil \) and \(L \) data items, i.e., at least half full

Any \(M > 2 \) and \(L \) will work, but:

We pick \(M \) and \(L \) based on disk-block size
Example

Suppose $M=4$ (max # pointers in **internal node**) and $L=5$ (max # data items at **leaf**)

- All **internal nodes** have at least 2 children
- All **leaves** have at least 3 data items (only showing keys)
- All **leaves** at same depth

Note on notation: Inner nodes drawn horizontally, leaves vertically to distinguish. Include empty cells
Balanced enough

Not hard to show height \(h \) is logarithmic in number of data items \(n \)

- Let \(M > 2 \) (if \(M = 2 \), then a list tree is legal – no good!)

- Because all nodes are at least half full (except root may have only 2 children) and all leaves are at the same level, the minimum number of data items \(n \) for a height \(h>0 \) tree is...

\[
n \geq 2 \left[\frac{M}{2} \right]^{h-1} \left[\frac{L}{2} \right]
\]

minimum number of leaves minimum data per leaf
Example: B-Tree vs. AVL Tree

Suppose we have 100,000,000 items

- Maximum height of AVL tree?

- Maximum height of B tree with $M=128$ and $L=64$?
Example: B-Tree vs. AVL Tree

Suppose we have 100,000,000 items

• Maximum height of AVL tree?
 – Recall $S(h) = 1 + S(h-1) + S(h-2)$
 – lecture7.xlsx reports: 37

• Maximum height of B tree with $M=128$ and $L=64$?
 – Recall $(2 \left\lceil \frac{M}{2} \right\rceil^{h-1}) \left\lceil \frac{L}{2} \right\rceil$
 – lecture9.xlsx reports: 5 (and 4 is more likely)
 – Also not difficult to compute via algebra
Disk Friendliness

What makes B trees so disk friendly?

• Many keys stored in one internal node
 – All brought into memory in one disk access
 • IF we pick M wisely
 – Makes the binary search over $M-1$ keys totally worth it
 (insignificant compared to disk access times)

• Internal nodes contain only keys
 – Any find wants only one data item; wasteful to load unnecessary items with internal nodes
 – So only bring one leaf of data items into memory
 – Data-item size doesn’t affect what M is
Maintaining balance

• So this seems like a great data structure (and it is)

• But we haven’t implemented the other dictionary operations yet
 – insert
 – delete

• As with AVL trees, the hard part is maintaining structure properties
 – Example: for insert, there might not be room at the correct leaf
Building a B-Tree (insertions)

The empty B-Tree (the root will be a leaf at the beginning)

\[M = 3 \quad L = 3 \]

Just need to keep data in order

\[
\begin{array}{c}
\text{Insert}(3) \quad 3 \\
\text{Insert}(18) \quad 3 \\
\text{Insert}(14) \quad 3 \\
\end{array}
\]

\[
\begin{array}{c}
\text{3} \\
\text{18} \\
\text{14} \\
\end{array}
\]
$M = 3 \quad L = 3$

When we ‘overflow’ a leaf, we split it into 2 leaves.

- Parent gains another child.
- If there is no parent (like here), we create one; how do we pick the key shown in it?
 - Smallest element in right tree.
Insert(32)

```
<table>
<thead>
<tr>
<th>3</th>
<th>14</th>
<th>30</th>
</tr>
</thead>
</table>
```

Insert(36)

```
<table>
<thead>
<tr>
<th>3</th>
<th>14</th>
<th>30</th>
<th>32</th>
</tr>
</thead>
</table>
```

Insert(15)

```
<table>
<thead>
<tr>
<th>3</th>
<th>14</th>
<th>30</th>
<th>32</th>
</tr>
</thead>
</table>
```

Split leaf again

\[
M = 3 \quad L = 3
\]
Split the internal node (in this case, the root)

What now?

\[M = 3 \quad L = 3 \]
Note: Given the leaves and the structure of the tree, we can always fill in internal node keys; ‘the smallest value in my right branch’

$M = 3 \quad L = 3$
Insertion Algorithm

1. Insert the data in its leaf in sorted order

2. If the leaf now has $L+1$ items, overflow!
 - Split the leaf into two nodes:
 - Original leaf with $\lceil (L+1)/2 \rceil$ smaller items
 - New leaf with $\lfloor (L+1)/2 \rfloor = \lceil L/2 \rceil$ larger items
 - Attach the new child to the parent
 - Adding new key to parent in sorted order

3. If step (2) caused the parent to have $M+1$ children, overflow!
 - ...
Insertion algorithm continued

3. If an internal node has \(M+1 \) children
 - Split the node into two nodes
 • Original node with \(\lceil (M+1)/2 \rceil \) smaller items
 • New node with \(\lfloor (M+1)/2 \rfloor = \lceil M/2 \rceil \) larger items
 - Attach the new child to the parent
 • Adding new key to parent in sorted order

Splitting at a node (step 3) could make the parent overflow too
 - So repeat step 3 up the tree until a node doesn’t overflow
 - If the root overflows, make a new root with two children
 • This is the only case that increases the tree height
Efficiency of insert

- Find correct leaf: $O(\log_2 M \log_M n)$
- Insert in leaf: $O(L)$
- Split leaf: $O(L)$
- Split parents all the way up to root: $O(M \log_M n)$

Total: $O(L + M \log_M n)$

But it’s not that bad:

- Splits are not that common (only required when a node is FULL, M and L are likely to be large, and after a split, will be half empty)
- Splitting the root is extremely rare
- Remember disk accesses were the name of the game: $O(\log_M n)$
B-Tree Reminder: Another dictionary

• Before we talk about deletion, just keep in mind overall idea:
 – Large data sets won’t fit entirely in memory
 – Disk access is slow
 – Set up tree so we do one disk access per node in tree
 – Then our goal is to keep tree shallow as possible
 – Balanced binary tree is a good start, but we can do better than $\log_2 n$ height
 – In an M-ary tree, height drops to $\log_M n$
 • Why not set M really really high? Height 1 tree…
 • Instead, set M so that each node fits in a disk block
And Now for Deletion…

Delete(32)

Easy case: Leaf still has enough data; just remove

$M = 3$ $L = 3$
Delete(15)

\[M = 3 \quad L = 3 \]

4/19/2013

Is there a problem?
$M = 3$ $L = 3$

Adopt from neighbor!
Delete(16)

Is there a problem?

\[M = 3 \quad L = 3 \]
Merge with neighbor!

But hey, Is there a problem?
$M = 3 \quad L = 3$

Adopt from neighbor!
Delete(14)

$M = 3 \quad L = 3$

4/19/2013
Delete(18)

Is there a problem?

\(M = 3 \quad L = 3 \)
$M = 3 \quad L = 3$

Merge with neighbor!

But hey, is there a problem?
$M = 3 \quad L = 3$

Merge with neighbor!

But hey, Is there a problem?
\[M = 3 \quad L = 3 \]

Pull out the root!
Deletion Algorithm, part 1

1. Remove the data from its leaf

2. If the leaf now has $\lceil I/2 \rceil - 1$, *underflow!*
 - If a neighbor has $> \lceil I/2 \rceil$ items, *adopt* and update parent
 - Else *merge* node with neighbor
 - Guaranteed to have a legal number of items
 - Parent now has one less node

3. If step (2) caused the parent to have $\lceil M/2 \rceil - 1$ children, *underflow!*
 - ...
Deletion algorithm (continued)

3. If an internal node has $\lceil \frac{M}{2} \rceil - 1$ children
 - If a neighbor has $> \lceil \frac{M}{2} \rceil$ items, adopt and update parent
 - Else merge node with neighbor
 • Guaranteed to have a legal number of items
 • Parent now has one less node, may need to continue up the tree

If we merge all the way up through the root, that’s fine unless the root went from 2 children to 1
 - In that case, delete the root and make child the root
 - This is the only case that decreases tree height

4/19/2013
Worst-Case Efficiency of Delete

- Find correct leaf: \(O(\log_2 M \log_M n) \)
- Remove from leaf: \(O(L) \)
- Adopt from or merge with neighbor: \(O(L) \)
- Adopt or merge all the way up to root: \(O(M \log_M n) \)

Total: \(O(L + M \log_M n) \)

But it’s not that bad:
- Merges are not that common
- Disk accesses are the name of the game: \(O(\log_M n) \)
Insert vs delete comparison

Insert
• Find correct leaf: \(O(\log_2 M \log_M n) \)
• Insert in leaf: \(O(L) \)
• Split leaf: \(O(L) \)
• Split parents all the way up to root: \(O(M \log_M n) \)

Delete
• Find correct leaf: \(O(\log_2 M \log_M n) \)
• Remove from leaf: \(O(L) \)
• Adopt/merge from/with neighbor leaf: \(O(L) \)
• Adopt or merge all the way up to root: \(O(M \log_M n) \)
B Trees in Java?

For most of our data structures, we have encouraged writing high-level, reusable code, such as in Java with generics.

It is worthwhile to know enough about “how Java works” to understand why this is probably a bad idea for B trees.

- If you just want a balanced tree with worst-case logarithmic operations, no problem
 - If \(M=3 \), this is called a 2-3 tree
 - If \(M=4 \), this is called a 2-3-4 tree
- Assuming our goal is efficient number of disk accesses
 - Java has many advantages, but it wasn’t designed for this

The key issue is extra levels of indirection…
Naïve approach

Even if we assume data items have int keys, you cannot get the data representation you want for “really big data”

```java
interface Keyed {
    int getKey();
}

class BTreeNode<E implements Keyed> {
    static final int M = 128;
    int[] keys = new int[M-1];
    BTreeNode<E>[] children = new BTreeNode[M];
    int numChildren = 0;
    ...
}

class BTreeLeaf<E implements Keyed> {
    static final int L = 32;
    E[] data = (E[]) new Object[L];
    int numItems = 0;
    ...
}
```
What that looks like

BTreeNode (3 objects with “header words”)

All the red references indicate unnecessary indirection

BTreeLeaf (data objects not in contiguous memory)

... (larger array)

- M-1 12 20 45
- M
- L
- ... (larger array)
- 70
- 20
The moral

• The whole idea behind B trees was to keep related data in contiguous memory

• But that’s “the best you can do” in Java
 – Again, the advantage is generic, reusable code
 – But for your performance-critical web-index, not the way to implement your B-Tree for terabytes of data

• Other languages (e.g., C++) have better support for “flattening objects into arrays”

• Levels of indirection matter!
Conclusion: Balanced Trees

- Balanced trees make good dictionaries because they guarantee logarithmic-time **find**, **insert**, and **delete**
 - Essential and beautiful computer science
 - But only if you can maintain balance within the time bound

- **AVL trees** maintain balance by tracking height and allowing all children to differ in height by at most 1

- **B trees** maintain balance by keeping nodes at least half full and all leaves at same height

- Other great balanced trees (see text; worth knowing they exist)
 - **Red-black trees**: all leaves have depth within a factor of 2
 - **Splay trees**: self-adjusting; amortized guarantee; no extra space for height information