CSE332: Data Abstractions

Lecture 2: Math Review; Algorithm Analysis

Ruth Anderson
Spring 2013

Announcements

* Project 1 posted soon

— Section materials on Eclipse will be very useful if you have
never used it

— (Could also start in a different environment if necessary)
— Section materials on generics will be very useful for Phase B

« Homework 1 coming soon (due next Friday)

« Bring info sheet to section tomorrow or lecture on Friday
» Fill out catalyst survey by Thursday evening

4/03/2013 2

Today

* Finish discussing queues
 Review math essential to algorithm analysis
— Proof by induction
— Bit patterns
— Powers of 2
— EXxponents and logarithms

« Begin analyzing algorithms
— Using asymptotic analysis (continue next time)

4/03/2013

Mathematical induction

Suppose P(n) is some predicate (involving integer n)
— Example: n2n/2+1 (foralln = 2)

To prove P(n) for all integers n = ¢, it suffices to prove

1. P(c) - called the “basis” or “base case”

2. If P(k) then P(k+1) — called the “induction step” or “inductive case”
We will use induction:

To show an algorithm is correct or has a certain running time
no matter how big a data structure or input value is

11 7

(Our “n” will be the data structure or input size.)

4/03/2013 4

P(n) =“ the sum of the first n powers of 2 (starting at 29) is 2"-1 ”

Inductive Proof Example

Theorem: P(n) holds for alln = 1
Proof: By induction on n

« Base case, n=1: Sum of first power of 2 is 2°, which equals 1.
And for n=1, 2"-1 equals 1.

* |nductive case;:

— Inductive hypothesis: Assume the sum of the first k powers
of 2 is 21

— Show, given the hypothesis, that the sum of the first (k+1)
powers of 2 is 2k*1-1

From our inductive hypothesis we know:

1+2+4+..+2t =21

Add the next power of 2 to both sides...
14+ 2+4+.. + 2 424 =2X —14+ 2"

We have what we want on the left; massage the right a bit

1+24+4+.. .+ 2" +2¢ =2(2")—1=2""1

4/03/2013

Note for homework

Proofs by induction will come up a fair amount on the homework

When doing them, be sure to state each part clearly:
 What you're trying to prove

 The base case

* The inductive case

* The inductive hypothesis

— In many inductive proofs, you'll prove the inductive case by
just starting with your inductive hypothesis, and playing with
It a bit, as shown above

4/03/2013

N bits can represent how many things?

Bits Patterns # of patterns

4/03/2013 7

Powers of 2

e AbitisOorl
« A sequence of n bits can represent 2" distinct things
— For example, the numbers 0 through 2"-1
« 210is 1024 (“about a thousand”, kilo in CSE speak)
« 220js “about a million”, mega in CSE speak
« 230js “about a billion”, giga in CSE speak
Java: an int is 32 bits and signed, so “max int” is “about 2 billion”
a long is 64 bits and signed, so “max long” is 2%3-1

4/03/2013

Therefore...

Could give a unique id to...

Every person in the U.S. with 29 bits

Every person in the world with 33 bits

Every person to have ever lived with 38 bits (estimate)

Every atom in the universe with 250-300 bits

So if a password is 128 bits long and randomly generated,
do you think you could guess it?

4/03/2013

Logarithms and Exponents

« Since so much is binary in CS, 1log almost always means log,

« Definition: log, X = yif x = 2¥
* S0, log, 1,000,000 = “a little under 20"
« Just as exponents grow very quickly, logarithms grow very slowly

1200000

1000000

See Excel file 800000
for pIOt data — 600000
play Wlth Itl 400000

200000

0 -
1234567 8 91011121314151617181920

4/03/2013 10

Logarithms and Exponents

35

30

25

20

15

10

4/03/2013 11

Logarithms and Exponents

25

1 2 3 4 56 7 8 910111213141516171819 20

4/03/2013 12

Logarithms and Exponents

3000

2500

2000

1500

1000

500

e el |

== logn

== n#"2

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

4/03/2013 13

Properties of logarithms

e log(A*B) = log A + log B
— S0 log(N¥)= k log N

* log(A/B) = 1log A - 1log B

X
« log(log x) Iiswritten log log x
— Grows as slowly as 2?2 grows fast

- Ex: o
log, log., 4billion ~ log, log, 2°* =log, 32 =5

(log x) (log x) is written 1log?x

— Itis greaterthan 1log xforallx > 2

4/03/2013 14

Log base doesn’t matter (much)

“Any base B log is equivalent to base 2 log within a constant factor”
— And we are about to stop worrying about constant factors!
— In particular, 1log, x = 3.22 log,, X

— In general, we can convert log bases via a constant
multiplier

— Say, to convert from base A to base B:
log; x = (log, x) / (log, B)

4/03/2013 15

Algorithm Analysis

As the “size” of an algorithm’s input grows
(integer, length of array, size of queue, etc.):
— How much longer does the algorithm take (time)
— How much more memory does the algorithm need (space)

Because the curves we saw are so different, we often only care
about “which curve we are like”

Separate issue: Algorithm correctness — does it produce the right
answer for all inputs

— Usually more important, naturally

4/03/2013 16

Example

 What does this pseudocode return?
x :=0;
for i=1 to N do
for j=1 to i do
X :=x + 3;
return x;

» Correctness: Forany N 20, it returns...

4/03/2013

17

Example

« What does this pseudocode return?
x :=0;
for i=1 to N do
for jJ=1 to i do
X = x + 3;
return x;

» Correctness: Forany N 20, it returns 3N(N+1)/2

* Proof: By induction on n
— P(n) = after outer for-loop executes n times, x holds
3n(n+1)/2
— Base: n=0, returns O
— Inductive: From P(k), x holds 3k(k+1)/2 after k iterations.

Next iteration adds 3(k+1), for total of 3k(k+1)/2 + 3(k+1)
= (Bk(k+1) + 6(k+1))/2 = (k+1)(3k+6)/2 = 3(k+1)(k+2)/2

4/03/2013

18

Example

 How long does this pseudocode run?
x :=0;
for i=1 to N do
for j=1 to i do
X :=x + 3;
return x;

* Running time: Forany N = 0,
— Assignments, additions, returns take “1 unit time”
— Loops take the sum of the time for their iterations

* S0: 2 + 2*(number of times inner loop runs)
— And how many times is that?

4/03/2013

19

Example

 How long does this pseudocode run?
x :=0;
for i=1 to N do
for j=1 to i do
X :=x + 3;
return x;

« How many times does the inner loop run?

4/03/2013

20

Example

 How long does this pseudocode run?
x :=0;
for i=1 to N do
for jJ=1 to i do
X :=x + 3;
return x;

* The total number of loop iterations is N*(N+1)/2
— This is a very common loop structure, worth memorizing

— This is proportional to N? , and we say O(N?), “big-Oh of”

« For large enough N, the N and constant terms are
Irrelevant, as are the first assignment and return

« See plot... N*(N+1)/2 vs. just N2/2

4/03/2013

21

Lower-order terms don’t matter

N*(N+1)/2 vs. just N?/2

14000000

12000000 3

10000000 o

8000000

6000000 74

4000000 e

2000000 ph

ranadd

0 M e T T
(= I o I o N o I o [o R o [o B oo [oo B o [o B o BN o Bl o o B o
cooococoococoooooQ o o
MW oy NN s~ O MWD

= o AN NN MM

390
420

al=e]
= =

——n*(n+l)/2
(n"2)/2

4/03/2013

0.012

0.01

0.008

0.006

0.004

0.002

))
relative difference
TTTTTTTTTTITT T T T T T I rrrrrrrr i T T T T T T T T T
o O o O O O O oo Qo Qo o oo o
o o o o o O o o o o o o
= 00 ™~ W O = 0 ~N W O = o0
— | ~J ~ ~J (a8} (an] =t =t =)

relative difference

22

N

for i=1 to N do

Geometric interpretation

| = N*N/2+N/2
1

for j=1 to i do
// small work

« Area of square: N*N
» Area of lower triangle of square: N*N/2
« [Extra area from squares crossing the diagonal: N*1/2

* As N grows, fraction of “extra area” compared to lower triangle
goes to zero (becomes insignificant)

4/03/2013 23

Recurrence Equations

For running time, what the loops did was irrelevant, it was how
many times they executed.

Running time as a function of input size n (here loop bound):
T(n) =n+T(n-1)
(and T(0) = 2ish, but usually implicit that T(0) is some constant)

Any algorithm with running time described by this formula is O(n?)

“Big-Oh” notation also ignores the constant factor on the high-
order term, so 3N? and 17N2 and (1/1000) N2 are all O(N?)

— As N grows large enough, no smaller term matters
— Next time: Many more examples + formal definitions

4/03/2013 24

Big-O: Common Names

O(1) constant (same as O(k) for constant k)
O(log n) logarithmic

O(n) linear

O(n 1og n) “n logn’

O(n?) quadratic

O(n3d) cubic

O(nk) polynomial (where is k is an constant)
O(k") exponential (where k is any constant > 1)

“exponential” does not mean “grows really fast”, it means “grows at
rate proportional to k" for some k>1"

4/03/2013 25

