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Terminology 

• Abstract Data Type (ADT) 

– Mathematical description of a “thing” with set of operations 
 

• Algorithm 

– A high level and language-independent description  

of a step-by-step process 
 

• Data Structure 

– A specific family of algorithms for implementing an ADT 
 

• Implementation 

– A specific instantiation in a specific language 
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Example: Stacks 

• The Stack ADT supports operations: 

– isEmpty: have there been same number of pops as pushes 

– push: takes an item 

– pop: raises an error if isEmpty, else returns most-recently 

pushed item not yet returned by a pop 

– Often some more operations 

 

• A Stack data structure could use a linked-list or an array or 

something else, with associated algorithms for the operations 

 

• One implementation is in the library java.util.Stack 
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Why is a Stack Useful 

The Stack ADT is a useful abstraction because: 

• It arises all the time in programming (see Weiss 3.6.3) 

– Recursive function calls 

– Balancing symbols (parentheses) 

– Evaluating postfix notation: 3 4 + 5 *  

– Infix ((3+4) * 5) to postfix conversion 
 

• We can code up a reusable library 
 

• We can communicate in high-level terms 

– “Use a stack and push numbers, popping for operators…” 

– Rather than, “create a linked list and add a node when…” 
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The Queue ADT 

• Operations 

 create 

 destroy 

 enqueue 

 dequeue 

 is_empty 

 

• Just like a stack except: 

– Stack: LIFO (last-in-first-out) 

– Queue: FIFO (first-in-first-out) 
 

• Just as useful and ubiquitous 
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Circular Array Queue Data Structure 
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// Basic idea only! 

enqueue(x) { 

  Q[back] = x; 

  back = (back + 1) % size  

} 

// Basic idea only! 

dequeue() { 

  x = Q[front]; 

  front = (front + 1) % size; 

  return x; 

} 

b c d e f 

Q: 0 size - 1 

front back 

• What if queue is empty? 

– Enqueue? 

– Dequeue? 

• What if array is full? 

• How to test for empty? 

• What is the complexity of 

the operations? 

• Can you find the kth 

element in the queue? 

  



Linked List Queue Data Structure 
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b c d e f 

front back 

// Basic idea only! 

enqueue(x) { 

  back.next = new Node(x); 

  back = back.next;  

} 

// Basic idea only! 

dequeue() { 

  x = front.item; 

  front = front.next; 

  return x; 

} 

• What if queue is empty? 

– Enqueue? 

– Dequeue? 

• Can list be full? 

• How to test for empty? 

• What is the complexity of 

the operations? 

• Can you find the kth 

element in the queue? 

  



The Stack ADT 

• Operations 

  create 

 destroy 

 push 

 pop 

 top 

 is_empty 

 

• Can also be implemented with an array or a linked list 

– This is Project 1! 

– As with queues, type of elements is irrelevant 

• Ideal for Java’s generic types (Project 1B) 
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Array: 

– May waste unneeded space 

or run out of space 

– Space per element excellent 

– Operations very simple / fast 

– Constant-time access to  

kth element 
 

– For operation insertAtPosition, 

must shift elements 

– But not part of these ADTs 

 

List: 

– Always just enough space 

– But more space per element 

– Operations very simple / fast 

– No constant-time access to  

kth element 
 

Array vs. Linked List Implementations 
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This is something every trained computer scientist knows in their 

sleep.  It’s like knowing how to do arithmetic or ride a bike. 

– For operation insertAtPosition 

must traverse elements 

– But not part of these ADTs 
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Proof via mathematical induction 

Suppose P(n) is some rule involving n 
– Example: n ≥ n/2 + 1, for all integers n ≥2 

To prove P(n) for all integers n ≥ c, it suffices to prove 
1. P(c) – called the “basis” or “base case” 
2. If P(k) then P(k+1) – called the “induction step” or 

“inductive case” 
 

Why we will care:  
 Use to show that an algorithm is correct or has a certain 

running time no matter how big a data structure or input 
value is (Our “n” will be the data structure or input size.) 
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Example 

P(n) = “the sum of the first n powers of 2 (starting 
at 20) is the next power of 2 minus 1” 

 

Theorem: P(n) holds for all integers n ≥ 1 

 

1=2-1 

1+2=4-1 

1+2+4=8-1 

So far so good… 
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Example 
Theorem: P(n) holds for all n ≥ 1 

Proof: By induction on n 

• Base case, n=1:  

• Inductive case:  If it holds for k, then it holds for k+1 

– Inductive hypothesis: Assume the sum of the first k powers of 2 is 
2k-1 

– Show, given the hypothesis, that the sum of the first (k+1) powers 
of 2 is 2k+1-1 

From our inductive hypothesis we know: 

 

Add the next power of 2 to both sides… 

 

We have what we want on the left; massage the right a bit 
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Another Example 
For all n ≥ 1 

 1+2+3+…+(n-1)+n = n(n+1)/2 

 Ex: 1+2+3+4+5+6 = 6*7/2 = 21 

Proof: By induction on n 

• Base case, n=1: 1=1*(1+1)/2 

• Inductive case: 

– Inductive hypothesis: Assume the sum of the first k integers (from 1 
up) equals k(k+1)/2 

– Show, given the hypothesis, that it holds true for the next integer 
(k+1) 

From our inductive hypothesis we know: 

 1+2+3+…+k = k(k+1)/2 

Add k+1 to both sides… 

 1+2+3+…+k +(k+1)= k(k+1)/2 + (k+1) 

We have what we want on the left; massage the right a bit 

 1+2+3+…+k +(k+1)= (k(k+1) + 2(k+1))/2 = (k2+k+2k+2)/2 = (k+1)(k+2)/2 
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Note for homework 
Proofs by induction may come up in the 

homework 

When doing them, be sure to state each part 
clearly: 

• What you’re trying to prove 

• The base case 

• The inductive case 

• The inductive hypothesis 
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Powers of 2 

• A bit is 0 or 1 

• A sequence of n bits can represent 2n distinct things 
– For example, the numbers 0 through 2n-1 

• 210 is 1024 (“about a thousand”, kilo in CSE speak) 

• 220 is “about a million”, mega in CSE speak 

• 230 is “about a billion”, giga in CSE speak 

 

Java: an int is 32 bits and signed, so “max int” is “about 
2 billion” 

          a long is 64 bits and signed, so “max long” is 263-1 
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Therefore… 

We could give a unique id to… 
 

• Every person in this room with 
 

• Every person in the U.S. with 
 

• Every person in the world with 
 

• Every person to have ever lived with 
 

• Every atom in the universe with 
 

So if a password is 128 bits long and randomly generated,  
 do you think you could guess it? 
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7 bits 
 

29 bits 
 

33 bits 
 

38 bits (estimate) 
 

250-300 bits 
 



Logarithms and Exponents 

• Since so much is binary in CS, log almost 
always means log2   

• Definition: log2 x = y iff  x = 2y 

• So, log2 1,000,000 = “a little under 20” 

Just as exponents  

grow very quickly,  

logarithms grow  

very slowly 
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Logarithms and Exponents 
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Properties of logarithms 

• log(A*B) = log A + log B 

– So log(Nk)= k log N 

• log(A/B) = log A – log B 

•      =x 

• log(log x) is written log log x 
– Grows as slowly as 22^x  grows fast 
– Ex:  

 

• (log x)(log x) is written log2x 
– It is greater than log x for all x > 2 
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Log base doesn’t matter (much) 

“Any base B log is equivalent to base 2 log 
within a constant factor” 
– And we are about to stop worrying about 

constant factors! 

– In particular, log2 x = 3.22 log10 x 

– In general, we can convert log bases via a 
constant multiplier 

– Say, to convert from base B to base A: 
   logB x = (logA x) / (logA B) 

       log10 x = (log2 x) / (log2 10) 
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Algorithm Analysis 

As the “size” of an algorithm’s input grows 
 (length of array to sort, size of queue to search, etc.): 

– How much longer does the algorithm take (time) 
– How much more memory does the algorithm need (space) 

 

We are generally concerned about approximate runtimes 
– Whether T(n)=3n+2 or T(n)=n/4+8, we say it runs in linear time 
– Common categories: 

• Constant: T(n)=1 
• Linear: T(n)=n 
• Logarithmic: T(n)=logn 
• Exponential: T(n)=2n 
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Example 
• First, what does this pseudocode return? 
     x := 0; 

     for i=1 to n do 

       for j=1 to i do 

          x := x + 3; 

     return x; 

• For any n ≥ 0, it returns 3n(n+1)/2 

• Why? 
– Consider, how many times does the inner loop run? 

– For i=1, it runs once 

– For i=2, it runs twice 

– Etc. 

– 1+2+3+…+n = n(n+1)/2 

– x gets raised by 3 each time 
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Example 

• How long does this pseudocode run? 
     x := 0; 
     for i=1 to n do 
       for j=1 to i do 
          x := x + 3; 
     return x; 
• Find running time in terms of n, for any n ≥ 0 

– Assignments, additions, simple comparisons, etc. take “1 
unit time” 
• Constant time 

– Loops take the sum of the time for their iterations 

• Say, (roughly) 2+5*(number of times inner loop runs) 
– Inner loop runs n(n+1)/2 times 
– So O(n2) time 
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Lower-order terms don’t matter for 
our purposes 

n*(n+1)/2 vs. just n2/2 
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We’ll discuss why on 
Monday 

In essence, we’re 
mostly concerned 
with behavior as n 
approaches infinity 



Big Oh (also written Big-O) 

• Big Oh is used for comparing asymptotic behavior of 
functions 

• We’ll get into the definition later, but for now: 
– ‘f(n) is O(g(n))’ roughly means 

• The function f(n) is at least as small as g(n) as they go toward infinity 
• Think of it as a ≤ for functions 

– BUT: Big Oh ignores constant factors 
• n+10 is O(n); we drop out the ‘+10’ 
• 5n is O(n); we drop out the ‘x5’ 
• The following is NOT true though: n2 is O(n) 

– Also note that ‘f(n) is O(g(n))’ gives an upper bound for f(n) 
• n is O(n2) 
• 5 is O(n) 
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Big Oh: Common Categories 
From fastest to slowest 
O(1)  constant (same as O(k) for constant k) 
O(log n) logarithmic 
O(n)  linear 
O(n log n)         “n log n” 
O(n2)  quadratic 
O(n3)  cubic 
O(nk)  polynomial (where is k is an constant) 
O(kn)  exponential (where k is any constant > 1) 
 

Usage note: “exponential” does not mean “grows really fast”, it 
means “grows at rate proportional to kn for some k>1” 
– A savings account accrues interest exponentially (k=1.01?) 
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What do we want to analyze? 

• Correctness 
• Performance: Algorithm’s speed or memory 

usage: our focus 
– Change in speed as the input grows 

• n increases by 1 
• n doubles 

– Comparison between 2 algorithms 

• Security 
• Reliability 
• Sometimes other properties (‘stable’ sorts) 
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Gauging performance 

• Uh, why not just run the program and time it? 
– Too much variability; not reliable: 

• Hardware: processor(s), memory, etc. 

• OS, version of Java, libraries, drivers 

• Choice of input 

• Programs running in the background, OS stuff, etc.: several 
executions on the same computer with the same settings may well 
yield different results 

• Implementation dependent 

– Timing doesn’t really evaluate the algorithm; it evaluates 
its implementation in one very specific scenario 

– As computer scientists, we are more interested in the 
algorithm itself 
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Gauging performance (cont.) 

• At the core of CS is a backbone of theory & mathematics 
– Examine the algorithm itself, mathematically, not the 

implementation 
– Reason about performance as a function of n; not just ‘it runs 

fast on this particular test file’ 
– Be able to mathematically prove things about performance 

• Yet, timing has its place 
– In the real world, we do want to know whether implementation 

A runs faster than implementation B on data set C 
– Ex: Benchmarking graphics cards 
– May do some timing in projects 

• Evaluating an algorithm?  Use asymptotic analysis 
• Evaluating an implementation of hardware/software?  

Timing can be useful 
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Big-Oh 
• Say we’re given 2 run-time functions f(n) & g(n) for input n 
• The Definition: f(n) is in O(g(n) ) iff there exist positive constants c and n0 

such that 
  f(n)    c g(n), for all n  n0. 

 
• The Idea: Can we find an n0  such that g is  
 always greater than f from there on out? 
 
 c: We are allowed to multiply g by a constant  
 value (say, 10) to make g larger (more on why  
 this is here in a moment) 
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 O(g(n)) is really a set of functions whose asymptotic behavior is less 
than or equal that of g(n) 

 

 Think of ‘f(n) is in O(g(n))’ as f(n) ≤ g(n) (sort of) 

  

n n0 

g 

f 



Big Oh (cont.) 

• The Intuition: 
– Take functions f(n) & g(n), consider only the most significant 

term and remove constant multipliers: 
• 5n+3 → n 
• 7n+.5n2+2000 → n2 

• 300n+12+nlogn → nlogn 
• – n →  ??? What does it mean to have a negative run-time? 

– Then compare the functions; if f(n) ≤ g(n), then  
  f(n) is in O(g(n)) 
– Do NOT ignore constants that are not additions or multipliers: 

• n3 is O(n2) : FALSE 
• 3n is O(2n) : FALSE 

– When in doubt, refer to the definition (examples in a moment) 
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Examples 
• True or false? 

1. 4+3n is O(n) 

2. n+2logn is 
O(logn) 

3. logn+2 is O(1) 

4. n50 is O(1.01n) 

5. There exists 
α>1.0 s.t.  

  αn is O(nβ) 

For some finite β 
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True 

False 

 

False 

True 

False 



Examples (cont.) 

• For f(n)=4n & g(n)=n2, prove f(n) is in O(g(n)) 

– A valid proof (for our purposes) is to find valid c & n0  

– When n=4, f=16 & g=16; this is the crossing over 
point 

– Say n0 = 4, and c=1 

– How many possible answers (c,n0) are there? 

• *Infinitely many:  

ex: n0 = 78, and c=42 
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The Definition: f(n) is in O(g(n) ) 

iff there exist positive constants c 

and n0 such that 

 f(n)    c g(n) for all n  n0. 



Examples (cont.) 

• For f(n)=n3 & g(n)=2n, prove f(n) is in O(g(n)) 

– Possible answer: n0=11, c=1 
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The Definition: f(n) is in O(g(n) ) 

iff there exist positive constants c 

and n0 such that 

 f(n)    c g(n) for all n  n0. 



What’s with the c? 

• To capture this notion of similar asymptotic behavior, 
we allow a constant multiplier (called c) 

• Consider: 
 f(n)=7n+5 

 g(n)=n 

• These have the same asymptotic behavior (linear), so 
f(n) is in O(g(n)) even though f is always larger 

• There is no n0 such that f(n)≤g(n) for all n≥n0 

• The ‘c’ in the definition allows for that; it allows us to 
‘throw out constant factors’ 

• To prove f(n) is in O(g(n)), have c=12, n0=1 
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Big Oh: Common Categories 
From fastest to slowest 
O(1)  constant (same as O(k) for constant k) 
O(log n) logarithmic 
O(n)  linear 
O(n log n)         “n log n” 
O(n2)  quadratic 
O(n3)  cubic 
O(nk)  polynomial (where is k is an constant) 
O(kn)  exponential (where k is any constant > 1) 
 

Usage note: “exponential” does not mean “grows really fast”, it means 
“grows at rate proportional to kn for some k>1” 
– A savings account accrues interest exponentially (k=1.01?) 

 
Where does log2n fit in? 
Where does loglogn fit in? 
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Caveats 

• Asymptotic complexity focuses on behavior of 
the algorithm for large n and is independent 
of any computer/coding trick, but results can 
be misleading 

– Example: n1/10 vs. log n 

• Asymptotically n1/10 grows more quickly 

• But the “cross-over” point is around 5 * 1017 

• So if you have input size less than 258, prefer n1/10 

14 



More Caveats 

• Even for more common functions, comparing O() 
for small n values can be misleading 
– Quicksort: O(nlogn) (expected) 
– Insertion Sort: O(n2)(expected) 
– Yet in reality Insertion Sort is faster for small n’s 
– We’ll learn about these sorts later 

• Usually talk about an algorithm being O(n) or 
whatever 
– But you can also prove bounds for entire problems 
– Ex: Sorting cannot take place faster than O(nlogn) in 

the worst case (assuming it’s sequential and 
comparison-based; more on these later) 
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Miscellaneous 

• Not uncommon to evaluate for: 

– Best-case 

– Worst-case 

– ‘Expected case’ 

• What are the run-times for BST lookup? 

– Best 

– Worst 

– ‘Expected’ 
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O(1) – find at root 

O(n) – tree is 1 long branch 

O(logn) – complicated; see book 



Notational Notes 

• We say (3n2+17)  is in O(n2)  

– Confusingly, we also say/write: 

• (3n2+17)  is O(n2)  

• (3n2+17)  =  O(n2) (very common; in the book) 
– But it’s not ‘=‘ as in ‘equality’: 

– We would never say O(n2) =  (3n2+17) 

• Perhaps the most accurate notation is 

  f(n)ϵ O(g(n)) 

– Because O(g(n)) is a set of functions 
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Analyzing code (worst case) 
Basic operations  take “some amount of” constant time: 

– Arithmetic (fixed-width) 
– Assignment to a variable 
– Access one Java field or array index 
– Etc. 

(This is an approximation of reality: a useful “lie”.) 
 
Consecutive statements  Sum of times 
Conditionals         Time of test plus slower branch 
Loops    Sum of iterations 
Calls    Time of call’s body 
Recursion   Solve recurrence equation 
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Analyzing code 

What are the run-times for the following code: 

1. for(int i=0;i<n;i++) O(1) 

2. for(int i=0;i<=n+100;i+=14) O(1) 

3. for(int i=0;i<n;i++) for(int j=0;j<i;j++) O(1) 

4. for(int i=0;i<n;i++) for(int j=0;j<n;j++) O(n) 

5. for(int i=1;i<n;i*=2) O(1) 

6. for(int i=0;i<n;i++) if(m(i)) O(n) else O(1) 
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O(n) 

O(n) 

O(n2) 

  O(n3) 

O(logn) 
Depends on 

m(); worst: 
O(n2) 



Big Oh’s Family 

• Big Oh: Upper bound: O( f(n) ) is the set of all functions 
asymptotically less than or equal to f(n): ‘’ of functions 
– g(n) is in O( f(n) ) if there exist  constants c and n0 such that  

  g(n)   c f(n) for all n  n0 
 

• Big Omega: Lower bound: ( f(n) ) is the set of all functions 
asymptotically greater than or equal to f(n): ‘’ of functions 
– g(n) is in ( f(n) ) if there exist  constants c and n0 such that  

  g(n)   c f(n) for all n  n0 
 

• Big Theta: Tight bound: ( f(n) ) is the set of all functions 
asymptotically equal to f(n): ‘=‘ of functions 
– Intersection of O( f(n) ) and ( f(n) )  (use different constants) 
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Regarding use of terms 

Common error is to say O(f(n)) when you mean (f(n)) 
– People often say O() to mean a tight bound 
– Say we have f(n)=n; we could say f(n) is in O(n), which is 

true, but only conveys the upper-bound 
– Somewhat incomplete; instead say it is (n) 
– This gives us a tighter bound 

 

Less common notation: 
– “little-oh”: like “big-Oh” but strictly less than 

• Example: n is o(n2) but not o(n) 

– “little-omega”: like “big-Omega” but strictly greater than 
• Example: n is (log n) but not (n) 
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Recurrence Relations 
• Computing run-times gets interesting with 

recursion 
• Say we want to perform some computation 

recursively on a list of size n 
– Conceptually, in each recursive call we: 

• Perform some amount of work, call it w(n) 
• Call the function recursively with a smaller portion of the list 

 
 So, if we do w(n) work per step, and reduce the n 

in the next recursive call by 1, we do total work: 
  T(n)=w(n)+T(n-1) 
 With some base case, like T(1)=5=O(1) 
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Recursive version of sum array 

Recurrence Relation: T(n) = O(1) + T(n-1) 
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int sum(int[] arr){ 
  return help(arr,0); 
} 
int help(int[]arr,int i) { 
  if(i==arr.length)  
    return 0; 
  return arr[i] + help(arr,i+1); 
} 

Recursive: 

– Recurrence is  

 k + k  + … + k   

 for n times 

 



Recurrence Relations (cont.) 

 Say we have the following recurrence relation: 
  T(n)=2+T(n-1) 
  T(1)=5 
Now we just need to solve it; that is, reduce it to a closed form 
 
Start by writing it out: 
 T(n)=2+T(n-1)=2+2+T(n-2)=2+2+2+T(n-3) 
  =2+2+2+…+2+T(1)=2+2+2+…+2+5 
  =2k+5, where k is the # of times we expanded T() 
 We expanded it out n-1 times, so 
  T(n)=2(n-1)+5=2n+3=O(n) 
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Example: Find k 

Find an integer in a sorted array 
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2 3 5 16 37 50 73 75 126 

// requires array is sorted      

// returns whether k is in array 

boolean find(int[]arr, int k){ 

   ??? 

} 



Linear search 

Find an integer in a sorted array 
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2 3 5 16 37 50 73 75 126 

// requires array is sorted      

// returns whether k is in array 

boolean find(int[]arr, int k){ 

   for(int i=0; i < arr.length; ++i) 

      if(arr[i] == k) 

        return true; 

   return false; 

} 

Best case: 6ish steps = O(1) 

Worst case: 6ish*(arr.length)   
        = O(arr.length) = O(n) 

      

 



Binary search 

Find an integer in a sorted array 

– Can also be done non-recursively (same run-time) 
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2 3 5 16 37 50 73 75 126 

// requires array is sorted      
// returns whether k is in array 
boolean find(int[]arr, int k){ 
   return help(arr,k,0,arr.length); 
} 
boolean help(int[]arr, int k, int lo, int hi) { 
   int mid = (hi+lo)/2; //i.e., lo+(hi-lo)/2 
   if(lo==hi)      return false; 
   if(arr[mid]==k) return true; 
   if(arr[mid]< k) return help(arr,k,mid+1,hi); 
   else            return help(arr,k,lo,mid); 
} 
    



Binary search 
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// requires array is sorted      
// returns whether k is in array 
boolean find(int[]arr, int k){ 
   return help(arr,k,0,arr.length); 
} 
boolean help(int[]arr, int k, int lo, int hi) { 
   int mid = (hi+lo)/2; 
   if(lo==hi)      return false; 
   if(arr[mid]==k) return true; 
   if(arr[mid]< k) return help(arr,k,mid+1,hi); 
   else            return help(arr,k,lo,mid); 
} 
    

Best case: 8ish steps = O(1) 

Worst case:   

 T(n) = 10ish + T(n/2) where n is hi-lo 



Solving Recurrence Relations 

1. Determine the recurrence relation.  What is the base case? 
– T(n) = 10 + T(n/2) T(1) = 8 

2. “Expand” the original relation to find an equivalent general 
expression in terms of the number of expansions. 

– T(n)  = 10 + 10 + T(n/4) 
          = 10 + 10 + 10 + T(n/8) 
                 = … 
                 = 10k + T(n/(2k)) where k is the # of expansions 

3. Find a closed-form expression by setting the number of 
expansions to a value which reduces the problem to a base case 

– n/(2k) = 1 means n = 2k  means k = log2 n 
– So T(n) = 10 log2 n + 8  (get to base case and do it) 
– So T(n) is O(log n) 
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Linear vs Binary Search 

• So binary search is O(log n) and linear is 
O(n)  

– Given the constants, linear search could still be 
faster for small values of n 

    Example w/ hypothetical constants: 

30 



What about a binary version of sum? 

Recurrence is T(n) = O(1) + 2T(n/2) = O(n) 
 (Proof left as an exercise) 
“Obvious”: have to read the whole array 
 You can’t do better than O(n)  
 Or can you…  
   We’ll see a parallel version of this much later 
   With ∞ processors, T(n) = O(1) + 1T(n/2) = O(logn) 

 31 

int sum(int[] arr){ 
   return help(arr,0,arr.length); 
} 
int help(int[] arr, int lo, int hi) { 
   if(lo==hi)   return 0; 
   if(lo==hi-1) return arr[lo];    
   int mid = (hi+lo)/2; 
   return help(arr,lo,mid) + help(arr,mid,hi); 
} 
    



Another example 

• T(n)=n + 2T(n/2), T(1)=c 

– Any guesses as to what algorithm(s) this 
represents? 

• Mergesort & quicksort (assuming good pivot selection) 

– Any guesses as to what the closed form for this is? 

• O(nlogn) 
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Really common recurrences 

Should know how to solve recurrences but also recognize some 
really common ones: 
 

 T(n) = O(1) + T(n-1)  linear 
 T(n) = O(1) + 2T(n/2)   linear 
 T(n) = O(1) + T(n/2)   logarithmic 
 T(n) = O(1) + 2T(n-1)   exponential 
 T(n) = O(n) + T(n-1)   quadratic 
 T(n) = O(n) + T(n/2)   linear 
 T(n) = O(n) + 2T(n/2)   O(n log n) 
 
Note big-Oh can also use more than one variable (graphs: vertices & 

edges) 
• Example: you can (and will in proj3!) sum all elements of an n-by-m 

matrix in O(nm) 
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New ADT: Priority Queue 

• A priority queue holds compare-able data 

 

• Unlike LIFO stacks and FIFO queues, needs to compare items 

– Given x and y: is x less than, equal to, or greater than y 

– Meaning of the ordering can depend on your data 

– Many data structures will require this: dictionaries, sorting 

 

• Integers are comparable, so will use them in examples 

 

• The priority queue ADT is much more general 

– Typically two fields, the priority and the data 
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New ADT: Priority Queue 

• Each item has a “priority” 

– The next or best item is the one with the lowest priority 

– So “priority 1” should come before “priority 4” 

– Simply by convention, could also do maximum priority 
 

 

 

• Operations:  

– insert 

– deleteMin 

 

 

• deleteMin  returns and deletes item with lowest priority 

– Can resolve ties arbitrarily 

insert deleteMin 

        6        2 

  15           23 

          12         18 

45       3               7 

Winter 2012 CSE332: Data Abstractions 5 



Priority Queue 

 insert a with priority 5 

 insert b with priority 3 

 insert c with priority 4 

 w = deleteMin 

 x = deleteMin 

 insert d with priority 2 

 insert e with priority 6 

 y = deleteMin 

 z = deleteMin  

 

 after execution: 

 

 w = b  

 x = c  

 y = d  

 z = a 
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Applications 

• Priority queue is a major and common ADT 

– Sometimes blatant, sometimes less obvious 

 

• Forward network packets in order of urgency 

 

• Execute work tasks in order of priority  

– “critical” before “interactive” before “compute-intensive” tasks 

– allocating idle tasks in cloud hosting environments 

 

• Sort (first insert all items, then deleteMin all items) 

– Similar to Project 1’s use of a stack to implement reverse 

 

Winter 2012 CSE332: Data Abstractions 7 



Advanced Applications 

• “Greedy” algorithms 

– Efficiently track what is “best” to try next 
 

• Discrete event simulation (e.g., virtual worlds, system simulation) 

– Every event e happens at some time t and generates  

new events e1, …, en at times t+t1, …, t+tn 

– Naïve approach:  

• Advance “clock” by 1 unit, exhaustively checking for events 

– Better: 

• Pending events in a priority queue (priority = event time) 

• Repeatedly: deleteMin and then insert new events 

• Effectively “set clock ahead to next event” 
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Finding a Good Data Structure 

• We will examine an efficient, non-obvious data structure 

– But let’s first analyze some “obvious” ideas for n data items 

– All times worst-case; assume arrays “have room” 

 

data         insert algorithm / time      deleteMin algorithm / time 

unsorted array  

unsorted linked list 

sorted circular array 

sorted linked list  

binary search tree 

Winter 2012 CSE332: Data Abstractions 9 

add at end          O(1)     search                 O(n) 

add at front         O(1)     search                 O(n) 

search / shift       O(n)     move front          O(1) 

put in right place O(n) remove at front   O(1)  

put in right place O(n) leftmost               O(n) 



Our Data Structure: Heap 

• We are about to see a data structure called a “heap” 

– Worst-case O(log n) insert and O(log n) deleteMin 

– Average-case O(1) insert (if items arrive in random order) 

– Very good constant factors 

 

• Possible because we only pay for the functionality we need 

– Need something better than scanning unsorted items 

– But do not need to maintain a full sort 

 

• The heap is a tree, so we need to review some terminology 
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Tree Terminology 

A 

E 

B 

D F 

C 

G 

I H 

L J M K N 

root(T): 

leaves(T): 

children(B): 

parent(H): 

siblings(E): 

ancestors(F): 

descendents(G): 

subtree(C): 

Tree T 
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Tree Terminology 

A 

E 

B 

D F 

C 

G 

I H 

L J M K N 

depth(B): 

 

height(G): 

 

height(T): 

 

degree(B): 

 

branching factor(T): 

 

 

Tree T 
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Types of Trees 

Certain terms define trees with specific structures 

 

• Binary tree:   Every node has at most 2 children 

• n-ary tree:   Every node as at most n children 

• Perfect tree:   Every row is completely full 

• Complete tree:   All rows except the bottom are completely full, 

 and it is filled from left to right 

What is the height of a perfect tree with n nodes?  A complete tree? 
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Properties of a Binary Min-Heap 

More commonly known as a binary heap or simply a heap 

 

– Structure Property:  A complete tree 

 

– Heap Property: The priority of every non-root node is  

 greater than the priority of its parent 

How is this different from a binary search tree? 
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Properties of a Binary Min-Heap 

Requires both structure property and the heap property 

15 30 

80 20 

10 

99 60 40 

80 20 

10 

50 700 

85 

not a heap a heap 

Where is the minimum priority item? 

What is the height of a heap with n items? 
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Basics of Heap Operations 

findMin: 

• return root.data 

 

deleteMin:  

• Move last node up to root 

• Violates heap property, 

“Percolate Down” to restore 

 

insert: 

• Add node after last position 

• Violate heap property, 

“Percolate Up” to restore 

 

 

 

 

 

 

 

 

Overall, the strategy is: 

• Preserve structure property 

• Break and restore heap property 

99 60 40 

80 20 

10 

50 700 

85 
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DeleteMin Implementation 

3 4 

9 8 5 7 

10 6 9 11 

1.  Delete value at root node 

 (and store it for later return) 
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Restoring the Structure Property 

2. We now have a “hole” at the root 

 

3. We must “fill” the hole with another value, 

must have a tree with one less node, and 

it must still be a complete tree 

 

4. The “last” node is the is obvious choice 

3 4 

9 8 5 7 

10 6 9 11 

3 4 

9 8 5 7 

10 6 9 11 
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Restoring the Heap Property 

5. Not a heap, it violates the heap property 

 

 

 

 

 

 

 

 

6. We percolate down to fix the heap 

 

While greater than either child 

 Swap with smaller child 

 

3 4 

9 8 5 7 

10 

6 9 11 
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Percolate Down 

While greater than either child 

 Swap with smaller child 

 
What is the runtime?  Why does this work? 

O(log n)   Both children are heaps 

? 

10 4 

9 8 5 7 

6 9 11 

3 
? 

3 4 

9 8 5 7 

10 

6 9 11 

10 

8 4 

9 5 7 

6 9 11 

3 

? 
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Maintaining the Structure Property 

1. There is only one valid shape for our 

tree after addition of one more node 

 

2. Put our new data there  

 

8 4 

9 10 5 7 

6 9 11 

1 

2 
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Restoring the Heap Property 

 

3. Then percolate up to fix heap property 

 

While less than parent 

 Swap with parent 

 

 

2 

8 4 

9 10 5 7 

6 9 11 

1 
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2 

Percolate Up 

8 4 

9 10 5 7 

6 9 11 

1 

? 

2 

5 

8 4 

9 10 7 

6 9 11 

1 

? 2 

5 

8 

9 10 4 7 

6 9 11 

1 ? 

While less than parent 

 Swap with parent 

 
What is the runtime?  Why does this work? 

O(log n)   Both children are heaps 
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Insert Implementation 

• Add a value to the tree 

 

• Afterwards, structure and heap 

properties must still be correct 

8 4 

9 10 5 7 

6 9 11 

3 

2 
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A Clever and Important Trick 

• We have seen worst-case O(log n) insert and deleteMin 

– But we promised average-case O(1) insert 

 

• Insert requires access to the “next to use” position in the tree 

– Walking the tree requires O(log n) steps 

 

• Remember to only pay for the functionality we need 

– We have said the tree is complete, but have not said why 

 

• All complete trees of size n contain the same edges 

– So why are we even representing the edges? 
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Array Representation of a Binary Heap 

G E D 

C B 

A 

J K H I 

F 

L 

From node i: 

 
left child: i*2 

right child: i*2+1 

parent: i/2 

 

wasting index 0 is 

convenient for the math 

7 

1 

2 3 

4 5 6 

9 8 10 11 12 

A B C D E F G H I J K L 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 

Array implementation: 
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Tradeoffs of the Array Implementation 

Advantages: 

• Non-data space: only index 0 and any unused space on right 

– Contrast to link representation using one edge per node 

(except root), a total of n-1 wasted space (like linked lists) 

– Array would waste more space if tree were not complete 

• Multiplying and dividing by 2 is extremely fast 

• The major one: Last used position is at index size, O(1) access 
 

Disadvantages: 

• Same might-be-empty or might-get-full problems we saw with 

stacks and queues (resize by doubling as necessary) 
 

Advantages outweigh disadvantages: “this is how people do it” 
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ADT: Priority Queue 

• Each item has a “priority” 

– The next or best item is the one with the lowest priority 

– So “priority 1” should come before “priority 4” 

– Simply by convention, could also do maximum priority 
 

 

 

• Operations:  

– insert 

– deleteMin 

 

 

• deleteMin  returns and deletes item with lowest priority 

– Can resolve ties arbitrarily 

insert deleteMin 

        6        2 

  15           23 

          12         18 

45       3               7 



Array Representation of a Binary Heap 

G E D 

C B 

A 

J K H I 

F 

L 

From node i: 

 
left child: 

right child: 

parent:   

 

wasting index 0 is 

convenient for the math 

7 

1 

2 3 

4 5 6 

9 8 10 11 12 

A B C D E F G H I J K L 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 

Array implementation: 

i*2 

i*2+1 

i/2 



Pseudocode: insert 

This pseudocode uses ints.  In real use, 

you will have data nodes with priorities. 

void insert(int val) { 

 if(size==arr.length-1) 

    resize();   

  size++; 

  i=percolateUp(size,val); 

  arr[i] = val; 

} 

int percolateUp(int hole,  
                int val) { 
  while(hole > 1 && 
        val < arr[hole/2]) 
    arr[hole] = arr[hole/2]; 
    hole = hole / 2; 
  } 
  return hole; 
} 

99 60 40 

80 20 

10 

700 50 

85 

10 20 80 40 60 85 99 700 50 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 



Pseudocode: deleteMin 

int deleteMin() { 

  if(isEmpty()) throw… 

  ans = arr[1]; 

  hole = percolateDown 

          (1,arr[size]); 

  arr[hole] = arr[size]; 

  size--; 

  return ans; 

} 

int percolateDown(int hole, 
                  int val) { 
 while(2*hole <= size) { 
  left  = 2*hole;  
  right = left + 1; 
  if(arr[left] < arr[right] 
     || right > size) 
    target = left; 
  else 
    target = right; 
  if(arr[target] < val) { 
    arr[hole] = arr[target]; 
    hole = target; 
  } else 
      break; 
 } 
 return hole; 
} 

99 60 40 

80 20 

10 

700 50 

85 

10 20 80 40 60 85 99 700 50 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 

This pseudocode uses ints.  In real use, 

you will have data nodes with priorities. 



Example 

1. insert: 105, 69, 43, 32, 16, 4, 2 

2. deleteMin 

0 1 2 3 4 5 6 7 

x x 

x x 

x  

x x 



Other Operations 

• decreaseKey:  

– given pointer to object in priority queue  

(e.g., its array index), lower its priority to p 

– Change priority and percolate up 

• increaseKey:  

– given pointer to object in priority queue  

(e.g., its array index), raise its priority to p 

– Change priority and percolate down 

• remove:  

– given pointer to object in priority queue  

(e.g., its array index), remove it from the queue 

– decreaseKey to p = -, then deleteMin 
 

 

 

What is the runtime? 

O(log n) 



Build Heap 

• Suppose you have n items to put in a new priority queue 

– Sequence of n inserts, O(n log n) 

 

• Can we do better? 

– Above is only choice if ADT does not provide buildHeap 

 

• Important issue in ADT design: how many specialized operations 

– Tradeoff: Convenience, Efficiency, Simplicity 

 

• In this case, we are motivated by efficiency 

– We can buildHeap using O(n) algorithm called Floyd’s Method 

 

 

 

 



Floyd’s Method 

Recall our general strategy for working with the heap: 

• Preserve structure property 

• Break and restore heap property 

 

 

1. Use our n items to make a complete tree 

– Put them in array indices 1,…,n 

 

2. Treat it as a heap and fix the heap-order property 

– Exactly how we do this is where we gain efficiency 



Floyd’s Method 

Bottom-up 

– Leaves are already in heap order 

– Work up toward the root one level at a time 

void buildHeap() { 

 for(i = size/2; i>0; i--) { 

    val  = arr[i]; 

   hole = percolateDown(i,val); 

    arr[hole] = val; 

  } 

} 



Example 

• In tree form for readability 

 

– Red for nodes which are 

not less than descendants  

 

– Notice no leaves are red 

 

– Check/fix each non-leaf 

bottom-up (6 steps here) 

 

6 7 1 8 

9 2 10 3 

11 5 

12 

4 



Example 

6 7 1 8 

9 2 10 3 

11 5 

12 

4 6 7 1 8 

9 2 10 3 

11 5 

12 

4 

Step 1 

• Happens to already be less than children 

 



Example 

6 7 1 8 

9 2 10 3 

11 5 

12 

4 

Step 2 

• 10 percolates down (and notice that 1 moves up) 

 

6 7 10 8 

9 2 1 3 

11 5 

12 

4 



Example 

Step 3 

• Another nothing-to-do step 

 

6 7 10 8 

9 2 1 3 

11 5 

12 

4 6 7 10 8 

9 2 1 3 

11 5 

12 

4 



Example 

Step 4 

• Percolate down as necessary (first 2, then 6) 

 

11 7 10 8 

9 6 1 3 

2 5 

12 

4 6 7 10 8 

9 2 1 3 

11 5 

12 

4 



Example 

Step 5 

11 7 10 8 

9 6 5 3 

2 1 

12 

4 11 7 10 8 

9 6 1 3 

2 5 

12 

4 

• Percolate down as necessary (the 1 again) 

 



Example 

Step 6 

11 7 10 8 

9 6 5 4 

2 3 

1 

12 11 7 10 8 

9 6 5 3 

2 1 

12 

4 

• Percolate down as necessary (first 1, then 3, then 4) 

 



But is it right? 

• “Seems to work” 

– First we will prove it restores the heap property (correctness) 

– Then we will  prove its running time (efficiency) 

void buildHeap() { 

 for(i = size/2; i>0; i--) { 

    val  = arr[i]; 

   hole = percolateDown(i,val); 

    arr[hole] = val; 

  } 

} 



Correctness 

Loop Invariant: For all j>i, arr[j] is less than its children 

• True initially: If j > size/2, then j is  a leaf 

– Otherwise its left child would be at position > size 

• True after one more iteration: loop body and percolateDown 

make arr[i] less than children without breaking the property 

for any descendants 

So after the loop finishes, all nodes are less than their children 

void buildHeap() { 

 for(i = size/2; i>0; i--) { 

    val  = arr[i]; 

   hole = percolateDown(i,val); 

    arr[hole] = val; 

  } 

} 



Efficiency 

Easy argument:  buildHeap is O(n log n) where n is size 

• size/2 loop iterations 

• Each iteration does one percolateDown, each is O(log n) 

 

This is correct, but there is a “tighter” analysis of the algorithm… 

void buildHeap() { 

 for(i = size/2; i>0; i--) { 

    val  = arr[i]; 

   hole = percolateDown(i,val); 

    arr[hole] = val; 

  } 

} 



Efficiency 

Better argument:  buildHeap is O(n) where n is size 

• size/2 total loop iterations: O(n) 

• 1/2 the loop iterations percolate at most 1 step 

• 1/4 the loop iterations percolate at most 2 steps 

• 1/8 the loop iterations percolate at most 3 steps 

• … 

• ((1/2) + (2/4) + (3/8) + (4/16) + (5/32) + …) < 2  (page 4 of Weiss) 

– So at most 2(size/2) total percolate steps: O(n)  

void buildHeap() { 

 for(i = size/2; i>0; i--) { 

    val  = arr[i]; 

   hole = percolateDown(i,val); 

    arr[hole] = val; 

  } 

} 



Lessons from buildHeap 

• Without  buildHeap, our ADT already allows clients to 

implement their own in worst-case O(n log n) 

– Worst case is inserting lower priority values later 
 

• By providing a specialized operation internal to the data structure 

(with access to the internal data), we can do O(n) worst case 

– Intuition: Most data is near a leaf, so better to percolate down 
 

• Can analyze this algorithm for: 

– Correctness:  

• Non-trivial inductive proof using loop invariant 

– Efficiency: 

• First analysis easily proved it was O(n log n) 

• A “tighter” analysis shows same algorithm is O(n) 

 

 



What we are Skipping (see text if curious) 

• d-heaps: have d children instead of 2 

– Makes heaps shallower, useful for heaps too big for memory 

– The same issue arises for balanced binary search trees and we 

will study “B-Trees” 

 

• merge: given two priority queues, make one priority queue 

– How might you merge binary heaps: 

• If one heap is much smaller than the other? 

• If both are about the same size? 

– Different pointer-based data structures for priority queues support 
logarithmic time merge operation (impossible with binary heaps) 

 



CSE332: Data Abstractions 
 

Lecture 6: Dictionary, BST, AVL Tree 

James Fogarty 

Winter 2012 



The Dictionary (a.k.a. Map) ADT 

• Data: 

– Set of (key, value) pairs 

– keys must be comparable 

 

• Operations: 

– insert(key,value) 

– find(key) 

– delete(key) 

– … 

• jfogarty 

James 

 Fogarty 

 … 

 

• trobison 

Tyler 

Robison 

 … 

 

• hchwei90 

Haochen 

 Wei 

 … 

 

• jabrah 

Jenny 

Abrahamson 

 … 

 

insert(jfogarty, ….) 

find(trobison) 

Tyler, Robison, … 

Probably the single most common ADT in everyday programs 

 

We will tend to emphasize the keys, don’t forget about the stored values 



Simple Implementations 

For dictionary with n key/value pairs 

 

      insert   find    delete 

• Unsorted linked-list 

 

• Unsorted array 

 

• Sorted linked list 

 

• Sorted array 

 

O(1)          O(n)            O(n) 

 

O(1)          O(n)            O(n) 

 

O(n)          O(n)            O(n) 

 

O(n)          O(log n)     O(n) 

  |    | 

log n + n  log n + n 



Binary Search 

3 4 5 7 8 9 10 1 

Target 4 



Binary Search Tree 

3 4 5 7 8 9 10 1 

 

 

 

 

 

 

 

 

 

 

 

 

Our goal is the performance of binary search in a tree representation 



Binary Search Tree 

4 

12 10 6 2 

11 5 

8 

14 

13 

7 9 

• Structure Property (“binary”) 

– each node has  2 children 

 

• Order Property 

– all keys in left subtree are  

smaller than node’s key 

– all keys in right subtree are  

larger than node’s key 

 



Are these BSTs? 

3 

11 7 1 

8 4 

5 

4 

18 10 6 2 

11 5 

8 

20 

21 

7 

15 



Are these BSTs? 

3 

11 7 1 

8 4 

5 

4 

18 10 6 2 

11 5 

8 

20 

21 

7 

15 



Insert and Find in BST 

20 9 2 

15 5 

12 

30 7 17 

insert(13) 

insert(8) 

insert(31) 

find(17) 

find(11) 

Insertion happens at leaves 
 

Find walks down tree 

10 

8 31 

13 



Deletion – The Leaf Case 

20 9 2 

15 5 

12 

30 7 17 

delete(17) 

10 



Deletion – The One Child Case 

20 9 2 

15 5 

12 

30 7 10 

delete(15) 



Deletion – The Two Child Case 

30 9 2 

20 5 

12 

7 

What can we use to replace the 5? 
 

– successor    from right subtree: findMin(node.right) 

– predecessor   from left subtree:   findMax(node.left) 

 

 

 

10 

delete(5) 



The Need for a Balanced BST 

Observation 
 

• BST is overall great 

– The shallower, the better! 
 

• But worst case height is O(n) 

– Caused by simple cases, such as pre-sorted data 

 

Solution 
 

Require a Balance Condition that will: 

1. ensure depth is always O(log n)    – strong enough! 

2. be easy to maintain               – not too strong! 



Potential Balance Conditions 

1. Left and right subtrees of the  

root have equal number of nodes 

 

 

 

2. Left and right subtrees of the  

root have equal height 

Too weak! 

Height mismatch example: 

Too weak! 

Double chain example: 



Potential Balance Conditions 

3. Left and right subtrees of every  

node have equal number of nodes 

 

 

 

4. Left and right subtrees of every  

node have equal height 

Too strong! 

Only perfect trees (2n – 1 nodes) 

Too strong! 

Only perfect trees (2n – 1 nodes) 



The AVL Balance Condition 

Left and right subtrees of every node 

have heights differing by at most 1 

 

Definition:  balance(node) = height(node.left) – height(node.right) 

 

AVL property:   for every node x,   –1  balance(x)  1    

 

• Ensures small depth 

– Can prove by showing an AVL tree of  

height h must have nodes exponential in h 

 

• Efficient to maintain 

– Using single and double rotations 

… 

3 

value 

height 

children 

10  key  



Calculating Height 

What is the height of a tree with root  r? 

int treeHeight(Node root) { 

  if(root == null) 

    return -1; 

  return 1 + max(treeHeight(root.left), 

                 treeHeight(root.right)); 

} 

Running time for tree with n nodes:  

 O(n) – single pass over tree 
 

Very important detail of definition: 

 height of a null tree is -1, height of tree with a single node is 0 



An AVL Tree? 

12 10 6 2 

11 5 

8 

14 13 7 9 

15 

This is the minimum  

AVL tree of height 4 

 

Let S(h) be the  

minimum nodes in height h 

 

 

S(h) = S(h-1) + S(h-2) + 1 

 

S(-1) = 0  S(2) = 4 

S(0) = 1  S(3) = 7 

S(1) = 2  S(4) = 12 

 

Solution of Recurrence: S(h)  1.62h 

 

 

1 

1 1 2 

0 

0 

0 

0 0 

3 2 

4 



3 

11 7 1 

8 4 

6 

2 

5 

0 

0 0 0 

1 

1 

2 

3 

4 

An AVL Tree? 

-1 



AVL Tree Operations 

• AVL find:  

– Same as BST find 

 

• AVL insert:  

– Same as BST insert 

• then check balance and potentially fix the AVL tree 

• four different imbalance cases 

 

• AVL delete:  

– As with insert, do the deletion and then handle imbalance 

 



Example 

 

 

Insert(6) 

Insert(3) 

Insert(1) 

 

 

Third insertion violates balance 

 

What is the only way to fix this? 

 

 

 

6 

3 

1 

2 

1 

0 

6 

3 

1 

0 

6 
0 



Single Rotation 

• Single rotation: The basic operation we use to rebalance 

– Move child of unbalanced node into parent position 

– Parent becomes a “other” child 

– Other subtrees move in the only way allowed by the BST 

3 

1 6 
0 0 

1 

6 

3 

0 

1 

2 

AVL Property violated here 

1 



Insert and Detect Potential Imbalance 

1. Insert the new node (at a leaf, as in a BST) 

2. For each node on the path from the new leaf to the root 

 the insertion may, or may not, have changed the node’s height 

3. After recursive insertion in a subtree 

 detect height imbalance 

 perform a rotation to restore balance at that node 
 

All the action is in defining the correct rotations to restore balance 
 

Fact that an implementation can ignore: 

– There must be a deepest element that is imbalanced 

– After rebalancing this deepest node, every node is balanced 

– So at most one node needs to be rebalanced 



Single Rotation Example: Insert(16) 

10 4 

22 8 

15 

3 6 

19 

17 20 

24 

16 



Single Rotation Example: Insert(16) 

10 4 

22 8 

15 

3 6 

19 

17 20 

24 

16 



Single Rotation Example: Insert(16) 

10 4 

22 8 

15 

3 6 

19 

17 20 

24 

16 

10 4 

8 

15 

3 6 

19 

17 

16 

22 

24 20 



Left-Left Case 

• Node imbalanced due to insertion in left-left grandchild 

– This is 1 of 4 possible imbalance cases 
 

• First we did the insertion, which made a  imbalanced 

a 

Z 

Y 

b 

X 

h h 

h 

h+1 

h+2 a 

Z 

Y 

b 

X 

h+1 h 

h 

h+2 

h+3 



Left-Left Case 

 

• So we rotate at a, using BST facts: X < b < Y < a < Z 

• A single rotation restores balance at the node 

– Is same height as before insertion, so ancestors now balanced 

a 

Z 

Y 

b 

X 

h+1 h 

h 

h+2 

h+3 b 

Z Y 

a 
h+1 h 

h 

h+1 

h+2 

X 



Right-Right Case 

• Mirror image to left-left case, so you rotate the other way 

– Exact same concept, but need different code 

a 

Z Y 

X 

h 

h 
h+1 

h+3 

b 

h+2 b 

Z 

Y 

a 

X 

h h 

h+1 

h+1 

h+2 



The Other Two Cases 

Single rotations not enough for insertions left-right or right-left subtree  

 

Simple example:  insert(1), insert(6), insert(3) 

 

First wrong idea:  single rotation as before 

 

3 

6 

1 

0 

1 

 2 

6 

1 3 

1 

0 0 



The Other Two Cases 

Single rotations not enough for insertions left-right or right-left subtree  

 

Simple example:  insert(1), insert(6), insert(3) 

 

Second wrong idea:  single rotation on child 

 

3 

6 

1 

0 

1 

 2 

6 

3 

1 

0 

 1 

 2 



Double Rotation 

• First attempt at rotation violated the BST property 

• Second attempt at rotation did not fix balance 

• But if we do both, it works!  
 

Double rotation:  

1. Rotate problematic child and grandchild 

2. Then rotate between self and new child 

3 

6 

1 

0 

1 

 2 

6 

3 

1 

0 

 1 

 2 

0 0 

1 

1 

3 

6 

Intuition: 3 must become root 



Right-Left Case 

a 

X 

b 

c 
h-1 

h 

h 

h 

V 
U 

h+1 

h+2 

h+3 

Z 

a 

X 

c 

h-1 

h+1 h 

h 

V 
U 

h+2 

h+3 

Z 

b 

h 

c 

X 

h-1 

h+1 

h 

h+1 

V U 

h+2 

Z 

b 

h 

a 

h 



Right-Left Case 

• Height of the subtree after rebalancing is the same as before insert 

– So no ancestor in the tree will need rebalancing 

• Does not have to be implemented as two rotations; can just do: 

a 

X 

b 

c 
h-1 

h 

h 

h 

V 
U 

h+1 

h+2 

h+3 

Z 

c 

X 

h-1 

h+1 

h 

h+1 

V U 

h+2 

Z 

b 

h 

a 

h 

Easier to remember than you may think: 

 Move c to grandparent’s position 

 Put a, b, X, U, V, and Z in the only legal position for a BST 



Left-Right Case 

• Mirror image of right-left 

– No new concepts, just additional code to write 

a 

h-1 

h 

h 
h 

V U 

h+1 

h+2 

h+3 

Z 

X 

b 

c 

c 

X 

h-1 

h+1 

h 

h+1 

V U 

h+2 

Z 

a 

h 

b 

h 



Double Rotation Example: Insert(5) 
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Double Rotation Example: Insert(5) 
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Double Rotation Example: Insert(5) 
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Double Rotation Example: Insert(5) 

5 

10 4 

8 

15 

3 6 

19 

17 

20 16 

22 

24 

15 

19 

17 

20 16 

22 

24 

10 

8 



Double Rotation Example: Insert(5) 

5 

10 4 

8 

15 

3 6 

19 

17 

20 16 

22 

24 

15 

19 

17 

20 16 

22 

24 

10 

8 

6 

4 

3 5 



Double Rotation Example: Insert(5) 

15 

19 

17 

20 16 

22 

24 

10 

8 

6 

4 

3 5 

15 

19 

17 

20 16 

22 

24 10 

8 

6 

4 

3 5 



Summarizing Insert 

• Insert as in a BST 
 

• Check back up path for imbalance, which will be 1 of 4 cases: 

– node’s left-left grandchild is too tall 

– node’s left-right grandchild is too tall 

– node’s right-left grandchild is too tall 

– node’s right-right grandchild is too tall 
 

• Only one case can occur, because tree was balanced before insert 
 

• After the single or double rotation, the smallest-unbalanced  

subtree now has the same height as before the insertion 

– So all ancestors are now balanced 



Efficiency 

 

Worst-case complexity of find: O(log n) 

 

Worst-case complexity of insert: O(log n) 

– Rotation is O(1) and there’s an O(log n) path to root 

– Same complexity even without “one-rotation-is-enough” fact 

 

Worst-case complexity of buildTree: O(n log n) 

 

 



Delete 

We will not cover delete 

– Multiple snow days, something has to give 
 

Do the delete as in a BST, then balance path up from deleted node 

– Which may be predecessor or successor 
 

Single and double rotate based on height imbalance 

– You are coming up the shorter subtree 

– But need to pull up the taller subtree 
 

Rotation reduces height of the tree 

– So you need to check all the way to the root 
 

delete is also O(log n) 
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The Dictionary (a.k.a. Map) ADT 

• Data: 

– Set of (key, value) pairs 

– keys must be comparable 

 

• Operations: 

– insert(key,value) 

– find(key) 

– delete(key) 

– … 

• jfogarty 

James 

 Fogarty 

 … 

 

• trobison 

Tyler 

Robison 

 … 

 

• hchwei90 

Haochen 

 Wei 

 … 

 

• jabrah 

Jenny 

Abrahamson 

 … 

 

insert(jfogarty, ….) 

find(trobison) 

Tyler, Robison, … 

We will tend to emphasize the keys, 

don’t forget about the stored values 



Comparison: The Set ADT 

The Set ADT is like a Dictionary without any values 

– A key is present or not (i.e., there are no repeats) 

 

For find, insert, delete, there is little difference 

– In dictionary, values are “just along for the ride” 

– So same data structure ideas work for dictionaries and sets 

 

But if your Set ADT has other important operations this may not hold 

– union, intersection, is_subset 

– Notice these are binary operators on sets 

– There are other approaches to these kinds of operations 

 



Dictionary Data Structures 

We will see three different data structures implementing dictionaries 

 

1. AVL trees 

– Binary search trees with guaranteed balancing 
 

2. B-Trees 

– Also always balanced, but different and shallower 
 

3. Hashtables 

– Not tree-like at all 
 

 

Skipping: Other balanced trees (e.g., red-black, splay) 
 



A Typical Hierarchy A plausible configuration … 

       CPU 

Disk: 1TB = 240 

Main memory: 2GB = 231 

L2 Cache: 2MB = 221 

L1 Cache: 128KB = 217 

instructions (e.g., addition): 230/sec 
 

get data in L1: 229/sec = 2 insns 

 

 get data in L2: 225/sec = 30 insns  

 

      get data in main memory: 

          222/sec = 250 insns  

 

       get data from  

        “new place” on disk: 

         27/sec =8,000,000 insns 

 

         “streamed”: 218/sec 



Morals 

It is much faster to do:   Than: 

  5 million arithmetic ops  1 disk access 

  2500 L2 cache accesses 1 disk access 

  400 main memory accesses 1 disk access 
 

Why are computers built this way? 

– Physical realities (speed of light, closeness to CPU) 

– Cost (price per byte of different technologies) 

– Disks get much bigger not much faster 

• Spinning at 7200 RPM accounts for much of  

the slowness and unlikely to spin faster in the future 

– Speedup at higher levels makes lower levels relatively slower 



Block and Line Size 

• Moving data up the memory hierarchy is slow because of latency 

– Might as well send more, just in case 

– Send nearby memory because: 

• It is easy, we are here anyways 

• And likely to be asked for soon (locality of reference) 

 

• Amount moved from disk to memory is called “block” or “page” size 

– Not under program control 

 

• Amount moved from memory to cache is called the “line” size 

– Not under program control 



M-ary Search Tree 

 

Perfect tree of height h has (Mh+1-1)/(M-1) nodes (textbook, page 4) 
 

# hops for find: If balanced, using logM n instead of log2 n 

– If M=256, that’s an 8x improvement 

– If n = 240 that’s 5 levels instead of 40 (i.e., 5 disk accesses) 

 

Runtime of find if balanced: O(log2 M logM n) 

• Build some sort of search tree with branching factor M: 

– Have an array of sorted children (Node[]) 

– Choose M to fit snugly into a disk block (1 access for array) 

 

(binary search children) (walk down the tree) 



Problems with M-ary Search Trees 

 

• What should the order property be? 

 

• How would you rebalance (ideally without more disk accesses)? 

 

• Any “useful” data at the internal nodes takes up  

disk-block space without being used by finds moving past it 

 

Use the branching-factor idea, but for a different kind of balanced tree 

– Not a binary search tree 

– But still logarithmic height for any M > 2 

 



B+ Trees   (we will just say “B Trees”) 

• Two types of nodes: 

– internal nodes and leaf nodes 

 

• Each internal node has room for  

up to M-1 keys and M children 

– no data; all data at the leaves! 

 

• Order property: 

– Subtree between x and y  

• Data that is  x and < y  

– Notice the  

 

• Leaf has up to L sorted data items 

 

3 7  12  21     

 

 

              

21x 12x<21 7x<12 3x<7 x<3 

As usual, we will ignore  

the presence of data in  

our examples 

 

Remember it is actually  

not there for internal nodes 



Find 

 

• We are accustomed to data at internal nodes 

 

• But find is still an easy root-to-leaf recursive algorithm 

– At each internal node do binary search on the  M-1 keys 

– At the leaf do binary search on the  L data items 

 

• To get logarithmic running time, we need a balance condition 

3 7  12  21     

 

 

              

21x 12x<21 7x<12 3x<7 x<3 



Structure Properties 

• Root (special case) 

– If tree has  L items, root is a leaf  

(occurs when starting up, otherwise very unusual) 

– Else has between 2 and M children 

 

• Internal Nodes 

– Have between M/2 and M children  (i.e., at least half full) 

 

• Leaf Nodes 

– All leaves at the same depth 

– Have between L/2 and L data items (i.e., at least half full) 

 

(Any M > 2 and L will work; picked based on disk-block size) 



Example 
Suppose M=4 (max # children / pointers in internal node) 

    and L=5 (max # data items at leaf) 

– All internal nodes have at least 2 children 

– All leaves at same depth, have at least 3 data items 

6 

8 

9 

10 

12 

14 

16 

17  

20 

22 

  

27 

28 

32 

  

34 

38 

39 

41 

44 

47 

49  

  

50 

60 

70 

  

12 44   

6     20 27 34  50     

        

                        

19              

24 

1 

2 

4 

  

Note on notation: Inner nodes drawn horizontally, 

leaves vertically to distinguish.  Including empty cells 



Balanced enough 

Not hard to show height h is logarithmic in number of data items n 

 

• Let M > 2 (if M = 2, then a list tree is legal, which is no good) 

 

• Because all nodes are at least half full (except root may have 

only 2 children) and all leaves are at the same level, the 

minimum number of data items n for a height h>0 tree is… 

   

                 n     2  M/2 h-1  L/2 

 

 
minimum number 

 of leaves 

minimum data  

per leaf 

Exponential in height  

because M/2 > 1 



Disk Friendliness 

What makes B trees so disk friendly? 

 

• Many keys stored in one internal node 

– All brought into memory in one disk access 

– But only if we pick M wisely 

– Makes the binary search over M-1 keys totally worth it 

(insignificant compared to disk access times) 

 

• Internal nodes contain only keys 

– Any find wants only one data item;  

wasteful to load unnecessary items with internal nodes 

– Only bring one leaf of data items into memory 

– Data-item size does not affect what M is 



Maintaining Balance 

• So this seems like a great data structure, and it is 

 

• But we haven’t implemented the other dictionary operations yet 

– insert 

– delete 

 

• As with AVL trees, the hard part is maintaining structure properties 



Building a B-Tree 

The empty B-Tree 

(the root will be a 

leaf at the beginning) 

M = 3 L = 3 

Insert(3) Insert(18)   

  

  

Insert(14) 
  

  

  

  

  

  3 3 

18 

3 

14 

18 

Simply need to  

keep data sorted 



Insert(30) 
3 

14 

18 

3 

14 

18 

M = 3 L = 3 

30 

3 

14 

18 

30 

18 

•When we ‘overflow’ a leaf, we split it into 2 leaves 

•Parent gains another child 

•If there is no parent, we create one 

 

•How do we pick the new key? 

•Smallest element in right tree 

??? 



Insert(32) 
3 

14 

18 

30 

18 

3 

14 

18 

30 

18 

3 

14 

18 

30 

18 

Insert(36) 

3 

14 

18 

30 

18 

Insert(15) 

M = 3 L = 3 

32 

32 

36 

32 

32 

36 

32 

15 

Split leaf again 



Insert(16) 

3 

14 

15 

18 

30 

18 32 

32 

36 

3 

14 

15 

18 

30 

18 32 

32 

36 

18 

30 

18 32 

32 

36 

M = 3 L = 3 

16 

3 

14 

15 

16 

15 

15 32 

18 

Split the internal node 

(in this case, the root) 

??? 



Insert(12,40,45,38) 

3 

14 

15 

16 

15 

18 

30 

32 

32 

36 

18 

3 

12 

14 

15 

16 

15 

18 

30 

32 40 

32 

36 

38 

18 

40 

45 

M = 3 L = 3 

Note: Given the leaves and the structure of the 

tree, we can always fill in internal node keys; 

‘the smallest value in my right branch’ 



Insertion Algorithm 

1. Insert the data in its leaf in sorted order 

 

2. If the leaf now has L+1 items, overflow! 

– Split the leaf into two nodes: 

• Original leaf with (L+1)/2  smaller items 

• New leaf with (L+1)/2 = L/2 larger items 

– Attach the new child to the parent 

• Adding new key to parent in sorted order 

 

3. If Step 2 caused the parent to have M+1 children, overflow! 



Insertion Algorithm 

3. If an internal node has M+1 children 

– Split the node into two nodes 

• Original node with (M+1)/2  smaller items 

• New node with (M+1)/2 = M/2 larger items 

– Attach the new child to the parent 

• Adding new key to parent in sorted order 

 

Step 3 splitting could make the parent overflow too 

– So repeat step 3 up the tree until a node does not overflow 

– If the root overflows, make a new root with two children 

• This is the only case that increases the tree height 

 



Worst-Case Efficiency of Insert 

• Find correct leaf: 

• Insert in leaf: 

• Split leaf: 

• Split parents all the way up to root: 

 

Total: 

 

But it’s not that bad: 

– Splits are not that common (only required when a node is FULL, 

M and L are likely to be large, and after a split will be half empty) 

– Splitting the root is extremely rare 

– Remember disk accesses is name of the game: O(logM n) 

 

O(log2 M logM n) 

O(L) 

O(L) 

O(M logM n) 

 

O(L + M logM n) 



Delete(32) 

3 

12 

14 

15 

16 

15 

18 

30 

32 40 

32 

36 

38 

18 

40 

45 

3 

12 

14 

15 

16 

15 

18 

30 

40 

18 

40 

45 

Deletion 

M = 3 L = 3 

36 

38 

Let them eat cake! 



Delete(15) 

3 

12 

14 

15 

16 

15 

18 

30 

36 40 

36 

38 

18 

40 

45 

3 

12 

14 

16 

16 

18 

30 

36 40 

36 

38 

18 

40 

45 

M = 3 L = 3 

Are we okay? 

Dang, not half full 

Are you using that 14? 

Can I borrow it? 



3 

12 

14 

16 

14 

18 

30 

36 40 

36 

38 

18 

40 

45 

M = 3 L = 3 

3 

12 

14 

16 

16 

18 

30 

36 40 

36 

38 

18 

40 

45 



Delete(16) 

3 

12 

14 

16 

14 

18 

30 

36 40 

36 

38 

18 

40 

45 

14 

18 

30 

36 40 

36 

38 

18 

40 

45 

M = 3 L = 3 

3 

12 

14 

Are you using that 12? Are you using that 18? 



3 

12 

14 

18 

30 

36 40 

36 

38 

18 

40 

45 

M = 3 L = 3 

14 

18 

30 

36 40 

36 

38 

18 

40 

45 

3 

12 

14 

Are you using that 18/30? 



3 

12 

14 

18 

30 

36 40 

36 

38 

18 

40 

45 

M = 3 L = 3 

3 

12 

14 

18 

18 

30 

40 

36 

38 

36 

40 

45 



Delete(14) 

3 

12 

14 

18 

18 

30 

40 

36 

38 

36 

40 

45 

3 

12 

18 

18 

30 

40 

36 

38 

36 

40 

45 

M = 3 L = 3 



Delete(18) 

3 

12 

18 

18 

30 

40 

36 

38 

36 

40 

45 

M = 3 L = 3 

3 

12 

18 

30 

40 

36 

38 

36 

40 

45 



3 

12 

30 

40 

36 

38 

36 

40 

45 

M = 3 L = 3 

3 

12 

18 

30 

40 

36 

38 

36 

40 

45 



3 

12 

30 

40 

36 

38 

36 

40 

45 

36 40 

3 

12 

30 

3 

36 

38 

40 

45 

M = 3 L = 3 



36 40 

3 

12 

30 

36 

38 

40 

45 

M = 3 L = 3 

36 40 

3 

12 

30 

3 

36 

38 

40 

45 



Deletion Algorithm 

1. Remove the data from its leaf 

 

2. If the leaf now has L/2 - 1, underflow! 

– If a neighbor has >  L/2 items, adopt and update parent 

– Else merge node with neighbor 

• Guaranteed to have a legal number of items 

• Parent now has one less node 

 

3. If Step 2 caused parent to have M/2 - 1 children, underflow! 

 



Deletion Algorithm 

3. If an internal node has M/2 - 1 children 

– If a neighbor has >  M/2 items, adopt and update parent 

– Else merge node with neighbor 

• Guaranteed to have a legal number of items 

• Parent now has one less node, may need to continue 

underflowing up the tree 

 

Fine if we merge all the way up through the root 

– Unless the root went from 2 children to 1 

– In that case, delete the root and make child the root 

– This is the only case that decreases tree height 

 



Worst-Case Efficiency of Delete 

• Find correct leaf: 

• Remove from leaf: 

• Adopt from or merge with neighbor: 

• Adopt or merge all the way up to root: 

 

Total: 

 

But it’s not that bad: 

– Merges are not that common 

– Remember disk access is the name of the game: O(logM n) 

O(log2 M logM n) 

O(L) 

O(L) 

O(M logM n) 

 

O(L + M logM n) 

 



Adoption for Insert 

 

But can sometimes avoid splitting via adoption 

– Change what leaf is correct by changing parent keys 

– This is simply “borrowing” but “in reverse” 

– Not necessary 
 

Example: 

3 

14 

18 

30 

18 

3 

14 

30 

31 

30 

Insert(31) 

32 

Adoption 

18 32 



 B Trees in Java? 

Remember you are learning deep concepts, not just trade skills 

 

For most of our data structures, we have encouraged  

writing high-level and reusable code, as in Java with generics 

 

It is worthwhile to know enough about “how Java works”  

and why this is probably a bad idea for B trees 

– If you just want balance with worst-case logarithmic operations 

• No problem, M=3 is a 2-3 tree, M=4, is a 2-3-4 tree 

– Assuming our goal is efficient number of disk accesses 

• Java has many advantages, but it wasn’t designed for this 

 

The key issue is extra levels of indirection… 

 



Naïve Approach 

Even if we assume data items have int keys, you cannot get the 

data representation you want for “really big data”  

interface Keyed<E> { 
  int key(E); 
} 
class BTreeNode<E implements Keyed<E>> { 
  static final int M = 128; 
  int[] keys = new int[M-1]; 
  BTreeNode<E>[] children = new BTreeNode[M]; 
  int numChildren = 0; 
  … 
} 
class BTreeLeaf<E> { 
  static final int L = 32; 
  E[] data = (E[])new Object[L]; 
  int numItems = 0; 
  … 
} 
 



What that looks like 

BTreeNode (3 objects with “header words”) 

M-1 12 20 45 

M 

70 

BTreeLeaf (data objects not in contiguous memory) 

20 

… (larger array) 

… (larger array) 

L … (larger array) 



The moral 

• The point of B trees is to keep related data in contiguous memory 
 

• All the red references on the previous slide are inappropriate 

– As minor point, beware the extra “header words” 
 

• But that is “the best you can do” in Java 

– Again, the advantage is generic, reusable code 

– But for your performance-critical web-index,  

not the way to implement your B-Tree for terabytes of data 
 

• Other languages better support “flattening objects into arrays” 
 

• Levels of indirection matter! 



Conclusion: Balanced Trees 

• Balanced trees make good dictionaries because they guarantee 
logarithmic-time find, insert, and delete 

– Essential and beautiful computer science 

– But only if you can maintain balance within the time bound 
 

• AVL trees maintain balance by tracking height and allowing all 

children to differ in height by at most 1 
 

• B trees maintain balance by keeping nodes at least half full and 

all leaves at same height 
 

• Other great balanced trees (see text; worth knowing they exist) 

– Red-black trees: all leaves have depth within a factor of 2 

– Splay trees: self-adjusting; amortized guarantee;  

       no extra space for height information 
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Conclusion of Balanced Trees 

• Balanced trees make good dictionaries because they  
guarantee logarithmic-time find, insert, and delete 

– Essential and beautiful computer science 

– But only if you can maintain balance within the time bound 
 

• AVL trees maintain balance by tracking height and  

allowing all children to differ in height by at most 1 
 

• B trees maintain balance by keeping nodes  

at least half full and all leaves at same height 
 

• Other great balanced trees (see text; worth knowing they exist) 

– Red-black trees: all leaves have depth within a factor of 2 

– Splay trees: self-adjusting; amortized guarantee;  

       no extra space for height information 

 

 



Simple Implementations 

For dictionary with n key/value pairs 

 

      insert   find    delete 

• Unsorted linked-list 

 

• Unsorted array 

 

• Sorted linked list 

 

• Sorted array 

 

• Balanced tree 

 

• Magic array           

 

O(1)          O(n)            O(n) 

 

O(1)          O(n)            O(n) 

 

O(n)          O(n)            O(n) 

 

O(n)          O(log n)     O(n) 

 

O(log n) O(log n)     O(log n)  

 

O(1)          O(1)            O(1)       average 

    case 

 



Hash Tables 

• Aim for constant-time find, insert, and delete 

– “On average” under some reasonable assumptions 
 

• A hash table is an array of some fixed size 
 

 

• Basic idea: 

 

 

0 

… 

TableSize – 1  

hash function: 

index = h(key) 

hash table 

key space (e.g., integers, strings) 



Hash Tables vs. Balanced Trees 

• In terms of a Dictionary ADT for just insert, find, delete, hash 

tables and balanced trees are just different data structures 

– Hash tables O(1) on average (assuming few collisions) 

– Balanced trees O(log n) worst-case 

 

• Constant-time is better, right? 

– Yes, but you need “hashing to behave” (must avoid collisions) 

– Yes, but findMin, findMax, predecessor, successor  

go from O(log n) to O(n), printSorted from O(n) to O(n log n)  

  

• Moral: If you need to frequently use operations based on sort order,  

     then you may prefer a balanced BST instead. 



Hash Tables 

• There are m possible keys (m typically large, even infinite) 

• We expect our table to have only n items  

• n is much less than m (often written n << m) 

 

Many dictionaries have this property 
 

– Compiler: All possible identifiers allowed by the language 

vs. those used in some file of one program 
 

– Database: All possible student names vs. students enrolled 
 

– AI: All possible chess-board configurations vs.  

those considered by the current player 



Hash Functions 

An ideal hash function: 

• Is fast to compute 

• “Rarely” hashes two “used” keys to the same index 

– Often impossible in theory; easy in practice 

– Will handle collisions in later 
0 

… 

TableSize – 1  

hash function: 

index = h(key) 

hash table 

key space (e.g., integers, strings) 



Who Hashes What 

• Hash tables can be generic 

– To store elements of type E, we just need E to be: 

1. Comparable: order any two E (as with all dictionaries) 

2. Hashable: convert any E to an int 
 

• When hash tables are a reusable library, the division of 

responsibility generally breaks down into two roles: 

• We will learn both roles, but most programmers “in the real world” 

spend more time as clients while understanding the library 

E int table-index 
collision? collision 

resolution 

client hash table library 



More on Roles 

Two roles must both contribute to minimizing collisions (heuristically) 

• Client should aim for different ints for expected items 

– Avoid “wasting” any part of E or the 32 bits of the int 

• Library should aim for putting “similar” ints in different indices 

– conversion to index is almost always “mod table-size” 

– using prime numbers for table-size is common 

 

E int table-index 
collision? collision 

resolution 

client hash table library 

Some ambiguity in terminology on which parts are “hashing” 

“hashing”? “hashing”? 



What to Hash? 

We will focus on two most common things to hash: ints and strings 
 

– If you have objects with several fields, it is usually best to  

hash most of the “identifying fields” to avoid collisions 
 

– Example:  

 
 class Person {  

   String first; String middle; String last;      

      Date birthdate;  

   } 
 

– An inherent trade-off: hashing-time vs. collision-avoidance 

 

 



Hashing Integers 

• key space = integers 
 

• Simple hash function:  

 h(key) = key % TableSize 

– Client: f(x) = x 

– Library g(x) = f(x) % TableSize 

– Fairly fast and natural 
 

• Example: 

– TableSize = 10 

– Insert 7, 18, 41, 34, 10 

– (As usual, ignoring corresponding data)  

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

7 

18 

41 

34 

10 



Collision Avoidance 

• With “x % TableSize” the number of collisions depends on 

– the ints inserted 

– TableSize 

 

• Larger table-size tends to help, but not always 

– Example: 70, 24, 56, 43, 10  
with TableSize = 10 and TableSize = 60 

 

• Technique: Pick table size to be prime. Why? 

– Real-life data tends to have a pattern,  

– “Multiples of 61” are probably less likely than “multiples of 60” 

– We will see some collision strategies do better with prime size 

 



More Arguments for a Prime Size 

If TableSize is 60 and… 

– Lots of data items are multiples of 2, wasting 50% of table 

– Lots of data items are multiples of 5, wasting 80% of table 

– Lots of data items are multiples of 10, wasting 90% of table 
 

If TableSize is 61… 

– Collisions can still happen but 2, 4, 6, 8, … will fill table 

– Collisions can still happen, but 5, 10, 15, 20, … will fill table 

– Collisions can still happen but 10, 20, 30, 40, … will fill table 
 

In general, if x and y are “co-prime” (means gcd(x,y)==1),  

then (a * x) % y == (b * x) % y  if and only if a % y == b % y 

– Good to have a TableSize that has  

no common factors with any “likely pattern” of x 



What if key is not an int? 

• If keys are not ints, the client must convert to an int 

– Trade-off: speed and distinct keys hashing to distinct ints 
 

• Common and important example: Strings 

– Key space K  = s0s1s2…sm-1  

• where si are chars:  si  [0,256] 
 

– Some choices:  Which best avoid collisions? 
 

1. h(K) = s0 % TableSize 

 

2. h(K) =                    % TableSize 

 

 

3. h(K) =                              % TableSize 

 

 

1
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Combining Hash Functions 

A few rules of thumb / tricks: 
 

1. Use all 32 bits (careful, that includes negative numbers) 
 

2. Use different overlapping bits for different parts of the hash  

– This is why  a factor of 37i works better than 256i 

– Example: “abcde” and “ebcda” 
 

3. When smashing two hashes into one hash, use bitwise-xor 

– bitwise-and produces too many 0 bits 

– bitwise-or produces too many 1 bits 
 

4. Rely on expertise of others; consult books and other resources 
 

5. Advanced: If keys are known ahead of time, a perfect hash 



Collision Resolution 

Collision:  

 When two keys map to the same location in the hash table 

 

We try to avoid it, but number-of-keys exceeds table size 

 

So hash tables generally need to support collision resolution 



Separate Chaining 

Chaining:  

All keys that map to the same  

table location are kept in a list    

(a.k.a. a “chain” or “bucket”) 

 

As easy as it sounds 

 

Example:  

insert 10, 22, 107, 12, 42  

with mod hashing  
and TableSize = 10 
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6 / 

7 / 

8 / 

9 / 



Separate Chaining 

0 

1 / 

2 / 

3 / 

4 / 

5 / 

6 / 

7 / 

8 / 

9 / 

10 / Chaining:  

All keys that map to the same  

table location are kept in a list    

(a.k.a. a “chain” or “bucket”) 

 

As easy as it sounds 

 

Example:  

insert 10, 22, 107, 12, 42  

with mod hashing  
and TableSize = 10 

 



Separate Chaining 

0 

1 / 

2 

3 / 

4 / 

5 / 

6 / 

7 / 

8 / 

9 / 

10 / 

22 / 

Chaining:  

All keys that map to the same  

table location are kept in a list    

(a.k.a. a “chain” or “bucket”) 

 

As easy as it sounds 

 

Example:  

insert 10, 22, 107, 12, 42  

with mod hashing  
and TableSize = 10 

 



Separate Chaining 

0 

1 / 

2 

3 / 

4 / 

5 / 

6 / 

7 

8 / 

9 / 

10 / 

107 / 

Chaining:  

All keys that map to the same  

table location are kept in a list    

(a.k.a. a “chain” or “bucket”) 

 

As easy as it sounds 

 

Example:  

insert 10, 22, 107, 12, 42  

with mod hashing  
and TableSize = 10 

 

22 / 



Separate Chaining 

0 

1 / 

2 

3 / 

4 / 

5 / 

6 / 

7 

8 / 

9 / 

10 / 

107 / 

Chaining:  

All keys that map to the same  

table location are kept in a list    

(a.k.a. a “chain” or “bucket”) 

 

As easy as it sounds 

 

Example:  

insert 10, 22, 107, 12, 42  

with mod hashing  
and TableSize = 10 

 

12 22 / 



Separate Chaining 

0 

1 / 

2 

3 / 

4 / 

5 / 

6 / 

7 

8 / 

9 / 

10 / 

42 

107 / 

12 22 / 

Chaining:  

All keys that map to the same  

table location are kept in a list    

(a.k.a. a “chain” or “bucket”) 

 

As easy as it sounds 

 

Example:  

insert 10, 22, 107, 12, 42  

with mod hashing  
and TableSize = 10 

 



Thoughts on Separate Chaining 

• Worst-case time for find? 

– Linear 

– But only with really bad luck or bad hash function 

– So not worth avoiding (e.g., with balanced trees at each bucket) 

• Keep small number of items in each bucket 

• Overhead of tree balancing not worthwhile for small n 

 

• Beyond asymptotic complexity, some “data-structure engineering” 

– Linked list, array, or a hybrid 

– Move-to-front list (as in Project 2) 

– Leave one element in the table itself,  

to optimize constant factors for the common case 



More Rigorous Separate Chaining Analysis 

Definition: The load factor, , of a hash table is 

 

N

TableSize
 

 number of elements 

Under chaining, the average number of elements per bucket is  

 

So if some inserts are followed by random finds, then on average: 

• Each unsuccessful find compares against  items 

• Each successful find compares against  / 2 items 

• If  is low, find & insert likely to be O(1) 

• We like to keep  around 1 for separate chaining 

 

   

 



Separate Chaining Deletion 

• Not too bad 

– Find in table 

– Delete from bucket 

 

• Delete 12 

 

• Similar run-time as insert 

0 

1 / 

2 

3 / 

4 / 

5 / 

6 / 

7 

8 / 

9 / 

10 / 

42 

107 / 

12 22 / 
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Open Addressing: Linear Probing 

• Why not use up the empty space in the table? 

 

• Store directly in the array cell (no linked list) 

 

• How to deal with collisions? 

 

• If h(key) is already full,  

– try (h(key) + 1) % TableSize.  If full, 

– try (h(key) + 2) % TableSize.  If full, 

– try (h(key) + 3) % TableSize.  If full… 

 

• Example: insert 38, 19, 8, 109, 10 

0 / 

1 / 

2 / 

3 / 

4 / 

5 / 

6 / 

7 / 

8 / 

9 / 



Open Addressing: Linear Probing 

• Why not use up the empty space in the table? 

 

• Store directly in the array cell (no linked list) 

 

• How to deal with collisions? 

 

• If h(key) is already full,  

– try (h(key) + 1) % TableSize.  If full, 

– try (h(key) + 2) % TableSize.  If full, 

– try (h(key) + 3) % TableSize.  If full… 

 

• Example: insert 38, 19, 8, 109, 10 
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4 / 

5 / 

6 / 

7 / 

8 38 
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Open Addressing: Linear Probing 

• Why not use up the empty space in the table? 

 

• Store directly in the array cell (no linked list) 

 

• How to deal with collisions? 

 

• If h(key) is already full,  

– try (h(key) + 1) % TableSize.  If full, 

– try (h(key) + 2) % TableSize.  If full, 

– try (h(key) + 3) % TableSize.  If full… 

 

• Example: insert 38, 19, 8, 109, 10 

0 / 

1 / 

2 / 

3 / 

4 / 

5 / 

6 / 

7 / 

8 38 

9 19 



Open Addressing: Linear Probing 

• Why not use up the empty space in the table? 

 

• Store directly in the array cell (no linked list) 

 

• How to deal with collisions? 

 

• If h(key) is already full,  

– try (h(key) + 1) % TableSize.  If full, 

– try (h(key) + 2) % TableSize.  If full, 

– try (h(key) + 3) % TableSize.  If full… 

 

• Example: insert 38, 19, 8, 109, 10 

0 8 

1 / 

2 / 

3 / 

4 / 

5 / 

6 / 

7 / 

8 38 

9 19 



Open Addressing: Linear Probing 

• Why not use up the empty space in the table? 

 

• Store directly in the array cell (no linked list) 

 

• How to deal with collisions? 

 

• If h(key) is already full,  

– try (h(key) + 1) % TableSize.  If full, 

– try (h(key) + 2) % TableSize.  If full, 

– try (h(key) + 3) % TableSize.  If full… 

 

• Example: insert 38, 19, 8, 109, 10 

0 8 

1 109 

2 / 

3 / 

4 / 

5 / 

6 / 

7 / 

8 38 

9 19 



Open Addressing: Linear Probing 

• Why not use up the empty space in the table? 

 

• Store directly in the array cell (no linked list) 

 

• How to deal with collisions? 

 

• If h(key) is already full,  

– try (h(key) + 1) % TableSize.  If full, 

– try (h(key) + 2) % TableSize.  If full, 

– try (h(key) + 3) % TableSize.  If full… 

 

• Example: insert 38, 19, 8, 109, 10 

0 8 

1 109 

2 10 

3 / 

4 / 

5 / 

6 / 

7 / 

8 38 

9 19 



Open Addressing 

This is one example of open addressing 
 

In general, open addressing means resolving  

collisions by trying a sequence of other positions in the table 
 

Trying the next spot is called probing 

– We just did linear probing 
h(key) + i) % TableSize 

– In general have some probe function f and use              

h(key) + f(i) % TableSize 
 

Open addressing does poorly with high load factor  

– So we want larger tables 

– Too many probes means we lose our O(1) 

 



Terminology 

We and the book use the terms 

– “chaining” or “separate chaining” 

– “open addressing” 

 

Very confusingly, 

– “open hashing” is a synonym for “chaining” 

– “closed hashing” is a synonym for “open addressing” 

 

We also do trees upside-down 



Other Operations 

insert finds an open table position using a probe function 

 

What about find? 

– Must use same probe function to “retrace the trail” for the data 

– Unsuccessful search when reach empty position 

 

What about delete? 

– Must use “lazy” deletion.  Why? 

 

– Marker indicates “no data here, but don’t stop probing” 

10  / 23 / / 16  26 



Primary Clustering 

It turns out linear probing is a bad idea, even though the probe 

function is quick to compute (which is a good thing) 

[R. Sedgewick] 

Tends to produce 

clusters, which lead to 

long probe sequences 

 

• Called  

primary clustering 

 

• Saw this starting in 

our example 



Analysis of Linear Probing 

• Trivial fact: For any  < 1, linear probing will find an empty slot 

– It is “safe” in this sense: no infinite loop unless table is full 

 

• Non-trivial facts we won’t prove: 

 Average # of probes given  (in the limit as TableSize → ) 

– Unsuccessful search: 

 

 

– Successful search:   

 

 

• This is pretty bad: need to leave sufficient empty space in the 

table to get decent performance (let’s look at a chart) 

  
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Analysis in Chart Form 

• Linear-probing performance degrades rapidly as table gets full 

– Formula assumes “large table” but point remains 
 

 

 

 

 

 

 

 

 

 

• Chaining performance was linear in  and has no trouble with  > 1 



Open Addressing: Quadratic Probing 

• We can avoid primary clustering by changing the probe function

  

      (h(key) + f(i)) % TableSize 
 

– For quadratic probing:  

f(i) = i2 

– So probe sequence is: 

• 0th probe:  h(key) % TableSize 

• 1st probe: (h(key) + 1) % TableSize 

• 2nd probe: (h(key) + 4) % TableSize 

• 3rd probe: (h(key) + 9) % TableSize 

• … 

• ith probe: (h(key) + i2) % TableSize 
 

• Intuition: Probes quickly “leave the neighborhood” 



Quadratic Probing Example 
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TableSize=10 

 

Insert:  

89 

18 

49 

58 

79 



Quadratic Probing Example 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 89 

TableSize=10 

 

Insert:  

89 

18 

49 

58 

79 



Quadratic Probing Example 

0 

1 

2 

3 

4 

5 

6 

7 

8 18 

9 89 

TableSize=10 

 

Insert:  

89 

18 

49 

58 

79 



Quadratic Probing Example 

0 49 

1 

2 

3 

4 

5 

6 

7 

8 18 

9 89 

TableSize=10 

 

Insert:  

89 

18 

49 

58 

79 



Quadratic Probing Example 

0 49 

1 

2 58 

3 

4 

5 

6 

7 

8 18 

9 89 

TableSize=10 

 

Insert:  

89 

18 

49 

58 

79 



Quadratic Probing Example 

0 49 

1 

2 58 

3 79 

4 

5 

6 

7 

8 18 

9 89 

TableSize=10 

 

Insert:  

89 

18 

49 

58 

79 



Another Quadratic Probing Example 

TableSize = 7 

 

Insert: 

76                 (76 % 7 = 6) 

40                 (40 % 7 = 5) 

48                   (48 % 7 = 6) 

5                     (  5 % 7 = 5) 

55                   (55 % 7 = 6) 

47                   (47 % 7 = 5) 
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Another Quadratic Probing Example 

TableSize = 7 

 

Insert: 

76                 (76 % 7 = 6) 

40                 (40 % 7 = 5) 

48                   (48 % 7 = 6) 

5                     (  5 % 7 = 5) 

55                   (55 % 7 = 6) 

47                   (47 % 7 = 5) 
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5 

6 76 



Another Quadratic Probing Example 

TableSize = 7 

 

Insert: 

76                 (76 % 7 = 6) 

40                 (40 % 7 = 5) 

48                   (48 % 7 = 6) 

5                     (  5 % 7 = 5) 

55                   (55 % 7 = 6) 

47                   (47 % 7 = 5) 
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4 

5 40 

6 76 



Another Quadratic Probing Example 

TableSize = 7 

 

Insert: 

76                 (76 % 7 = 6) 

40                 (40 % 7 = 5) 

48                   (48 % 7 = 6) 

5                     (  5 % 7 = 5) 

55                   (55 % 7 = 6) 

47                   (47 % 7 = 5) 

 

 

0 48 

1 

2 
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4 

5 40 

6 76 



Another Quadratic Probing Example 

TableSize = 7 

 

Insert: 

76                 (76 % 7 = 6) 

40                 (40 % 7 = 5) 

48                   (48 % 7 = 6) 

5                     (  5 % 7 = 5) 

55                   (55 % 7 = 6) 

47                   (47 % 7 = 5) 

 

 

0 48 

1 

2 5 

3 

4 

5 40 

6 76 



Another Quadratic Probing Example 

TableSize = 7 

 

Insert: 

76                 (76 % 7 = 6) 

40                 (40 % 7 = 5) 

48                   (48 % 7 = 6) 

5                     (  5 % 7 = 5) 

55                   (55 % 7 = 6) 

47                   (47 % 7 = 5) 

 

 

0 48 

1 

2 5 

3 55 

4 

5 40 

6 76 



Another Quadratic Probing Example 

TableSize = 7 

 

Insert: 

76                 (76 % 7 = 6) 

40                 (40 % 7 = 5) 

48                   (48 % 7 = 6) 

5                     (  5 % 7 = 5) 

55                   (55 % 7 = 6) 

47                   (47 % 7 = 5) 

 

 

0 48 

1 

2 5 

3 55 

4 

5 40 

6 76 

Doh: For all n, (5 +(n*n)) % 7 is 0, 2, 5, or 6 

 
Proof uses induction and  (n2+5) % 7 = ((n-7)2+5) % 7 

In fact, for all c and k, (n2+c) % k = ((n-k)2+c) % k 



From Bad News to Good News 

• After TableSize quadratic probes, we cycle through the same indices 

 

• The good news:  

 

– For prime T and 0  i,j  T/2 where i  j, 

    (h(key) + i2) % T  (h(key) + j2) % T 

 

– If T = TableSize is prime and  < ½,  

quadratic probing will find an empty slot in at most T/2 probes 
 

– If you keep  < ½, no need to detect cycles 
 



Clustering reconsidered 

• Quadratic probing does not suffer from primary clustering: 

quadratic nature quickly escapes the neighborhood 

 

• But it’s no help if keys initially hash to the same index 

– Any 2 keys that hash to the same value will have the same 

series of moves after that 

– Called secondary clustering 

 

• Can avoid secondary clustering with a probe function that 

depends on the key: double hashing 



Open Addressing: Double hashing 

Idea:  Given two good hash functions h and g,  
 it is very unlikely that for some key,  h(key) == g(key) 

 

  (h(key) + f(i)) % TableSize 
 

– For double hashing:  

f(i) = i*g(key) 

– So probe sequence is: 

• 0th probe:  h(key) % TableSize 

• 1st probe: (h(key) + g(key)) % TableSize 

• 2nd probe: (h(key) + 2*g(key)) % TableSize 

• 3rd probe: (h(key) + 3*g(key)) % TableSize 

• … 

• ith probe: (h(key) + i*g(key)) % TableSize 
 

• Detail: Must make sure that g(key) cannot be 0 

 



Double Hashing 
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Insert these values into the hash table 

in this order.  Resolve any collisions 

with double hashing: 

13 
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33 

147 

43 

T = 10 (TableSize) 

Hash Functions: 

   h(key) = key mod T 

   g(key) = 1 + ((key/T) mod (T-1)) 
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   g(key) = 1 + ((key/T) mod (T-1)) 

    



Double Hashing 
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Insert these values into the hash table 

in this order.  Resolve any collisions 

with double hashing: 

13 

28 

33 
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43 

T = 10 (TableSize) 

Hash Functions: 

   h(key) = key mod T 

   g(key) = 1 + ((key/T) mod (T-1)) 

    



Double Hashing 
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Insert these values into the hash table 

in this order.  Resolve any collisions 

with double hashing: 
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43 

T = 10 (TableSize) 

Hash Functions: 

   h(key) = key mod T 

   g(key) = 1 + ((key/T) mod (T-1)) 

    



Double Hashing 

0 

1 

2 

3 13 

4 

5 

6 

7 33 

8 28 

9 

Insert these values into the hash table 

in this order.  Resolve any collisions 

with double hashing: 

13 

28 

33 

147 

43 

T = 10 (TableSize) 

Hash Functions: 

   h(key) = key mod T 

   g(key) = 1 + ((key/T) mod (T-1)) 

    



Double Hashing 

0 

1 

2 

3 13 

4 

5 

6 

7 33 

8 28 

9 147 

Insert these values into the hash table 

in this order.  Resolve any collisions 

with double hashing: 

13 

28 

33 

147 

43 

T = 10 (TableSize) 

Hash Functions: 

   h(key) = key mod T 

   g(key) = 1 + ((key/T) mod (T-1)) 

    

Doh: 

3 + 0 = 3 3 + 15 = 18 

3 + 5 = 8 3 + 20 = 23 

3 + 10 = 13 3 + 25 = 28 



Double Hashing Analysis 

• Intuition:  

 

 Because each probe is “jumping” by g(key) each time,  

 we should both “leave the neighborhood” and  

 “go different places from the same initial collision” 

 

• But, as in quadratic probing, we could still have a problem 

where we are not “safe” (infinite loop despite room in table) 

 

• It is known that this cannot happen in at least one case: 

• h(key) = key % p 

• g(key) = q – (key % q) 

• 2 < q < p 

• p and q are prime 



Where are we? 

• Separate Chaining is easy 

– find, delete proportional to load factor on average 

– insert can be constant if just push on front of list 

 

• Open addressing uses probing, has clustering issues as it gets full 

– Why use it: 

• Less memory allocation?  

• Run-time overhead for list nodes; array could be faster? 

• Easier data representation? 

 

• Now:  

– Growing the table when it gets too full (aka “rehashing”) 

– Relation between hashing/comparing and connection to Java 



Rehashing 

• As with array-based stacks/queues/lists 

– If table gets too full, create a bigger table and copy everything 
 

• With chaining, we get to decide what “too full” means 

– Keep load factor reasonable (e.g., < 1)? 

– Consider average or max size of non-empty chains? 
 

• For open addressing, half-full is a good rule of thumb 
 

• New table size 

– Twice-as-big is a good idea, except that won’t be prime! 

– So go about twice-as-big  

– Can have a list of prime numbers in your code,  

since you probably will not grow more than 20-30 times,  

and can then calculate after that 



Rehashing 

• What if we copy all data to the same indices in the new table? 

– Will not work; we calculated the index based on TableSize 

 

• Go through table, do standard insert for each into new table 

– Run-time? 

– O(n):  Iterate through old table 

 

• Resize is an O(n) operation, involving n calls to the hash function  

– Is there some way to avoid all those hash function calls? 

 

– Space/time tradeoff: Could store h(key) with each data item 

 

– Growing the table is still O(n); only helps by a constant factor 



Hashing and Comparing 

• Our use of int key can lead to overlooking a critical detail 

– We initial hash E,  

– While chaining or probing, we compare to E. 

• Just need equality testing (i.e., compare == 0) 
 

• So a hash table needs a hash function and a comparator 

– In Project 2, you will use two function objects 

– The Java library uses a more object-oriented approach:  
each object has an equals method and a hashCode method: 

 

 

 

class Object {  

  boolean equals(Object o) {…} 

  int hashCode() {…} 

  … 

} 



Equal Objects Must Hash the Same 

• The Java library (and your project hash table) 

make a very important assumption that clients must satisfy 
 

• Object-oriented way of saying it: 

 If a.equals(b), then we must require 

a.hashCode()==b.hashCode() 
 

• Function object way of saying it: 

       If c.compare(a,b) == 0, then we must require 

           h.hash(a) == h.hash(b) 

 

• If you ever override equals 

– You need to override hashCode also in a consistent way 

– See CoreJava book, Chapter 5 for other “gotchas” with equals 

 



Comparable/Comparator Have Rules Too 

We have not emphasized important “rules” about comparison for: 

– all our dictionaries 

– sorting (next major topic) 

 

Comparison must impose a consistent, total ordering: 

 

For all a, b, and c, 

– If compare(a,b) < 0, then compare(b,a) > 0 

– If compare(a,b) == 0, then compare(b,a) == 0 

– If compare(a,b) < 0 and  

   compare(b,c) < 0, then compare(a,c) < 0 



A Generally Good hashCode() 

• int result = 17; 

• foreach field f 

– int fieldHashcode = 

• boolean: (f ? 1: 0) 

• byte, char, short, int: (int) f 

• long: (int) (f ^ (f >>> 32)) 

• float: Float.floatToIntBits(f) 

• double: Double.doubleToLongBits(f), then above 

• Object: object.hashCode( ) 

– result = 31 * result + fieldHashcode 

 



Final Word on Hashing 

• The hash table is one of the most important data structures 

– Efficient find, insert, and delete 

– Operations based on sort order are not so efficient 

• e.g., FindMin, FindMax, predecessor 

 

• Important to use a good hash function 

– Good distribution, uses enough of key’s meaningful values 

 

• Important to keep hash table at a good size 

– Prime #, preferable  depends on type of table 

 

• Popular topic for job interview questions 

– Also many real-world applications 
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Introduction to Sorting 

• We have covered stacks, queues, priority queues, and dictionaries 

– All focused on providing one element at a time 

 

• But often we know we want “all the things” in some order 

– Anyone can sort, but a computer can sort faster 

– Very common to need data sorted somehow 

• Alphabetical list of people 

• List of countries ordered by population 

 

• Algorithms have different asymptotic and constant-factor trade-offs 

– No single “best” sort for all scenarios 

– Knowing “one way to sort” is not sufficient 



More Reasons to Sort 

General technique in computing:  

 Preprocess data to make subsequent operations faster 

 

Example: Sort the data so that you can 

– Find the kth largest in constant time for any k 

– Perform binary search to find elements in logarithmic time 

 

Whether the performance of the preprocessing matters depends on 

– How often the data will change 

– How much data there is 



Careful Statement of the Basic Problem 
Assume we have n comparable elements in an array, 

and we want to rearrange them to be in increasing order 

 

Input: 

– An array A of data records 

– A key value in each data record (potentially a set of fields) 

– A comparison function (must be consistent and total) 

• Given keys a and b, what is their relative ordering?  <, =, >? 
 

Effect: 

– Reorganize the elements of A such that for any i and j,  

 if i < j then A[i]  A[j] 

– Unspoken assumption:  A must have all the data it started with 

 

An algorithm doing this is a comparison sort 



Variations on the basic problem 

1. Maybe elements are in a linked list (could convert to array and  

back in linear time, but some algorithms need not do so) 
 

2. Maybe ties need to be resolved by “original array position” 

– Sorts that do this naturally are called stable sorts 

– Others could tag each item with its original position and 

adjust their comparisons (non-trivial constant factors) 
 

3. Maybe we must not use more than O(1) “auxiliary space” 

– Sorts meeting this requirement are called in-place sorts 
 

4. Maybe we can do more with elements than just compare 

– Sometimes leads to faster algorithms 
 

5. Maybe we have too much data to fit in memory 

– Use an “external sorting” algorithm 



Sorting: The Big Picture 

Simple 

algorithms: 

O(n2) 

Fancier 

algorithms: 

O(n log n) 

Comparison 

lower bound: 

(n log n) 

Specialized 

algorithms: 

O(n) 

Handling 

huge data 

sets 

Insertion sort 

Selection sort 

Shell sort 

… 

Heap sort 

Merge sort 

Quick sort (avg) 

… 

Bucket sort 

Radix sort 

External 

sorting 



Insertion Sort 

• Idea:  At step k,  

 put the kth input element in the correct position 

 among the first k elements 
 

• Alternate way of saying this: 

– Sort first element (this is easy) 

– Now insert 2nd element in order 

– Now insert 3rd element in order 

– Now insert 4th element in order 

– … 
 

• “Loop invariant”: when loop index is i, first i elements are sorted 
 

• Time?  

    Best-case  _____     Worst-case  _____     “Average” case ____ 

 



Insertion Sort 

• Idea:  At step k,  

 put the kth input element in the correct position 

 among the first k elements 
 

• Alternate way of saying this: 

– Sort first element (this is easy) 

– Now insert 2nd element in order 

– Now insert 3rd element in order 

– Now insert 4th element in order 

– … 
 

• “Loop invariant”: when loop index is i, first i elements are sorted 
 

• Time?  

    Best-case   O(n)     Worst-case   O(n2)     “Average” case   O(n2) 

           start sorted           start reverse sorted       (see text)   



Selection Sort 

• Idea:  At step k,  

 find the smallest element among the unsorted elements 

 and put it at position k 
 

• Alternate way of saying this: 

– Find smallest element, put it 1st 

– Find next smallest element, put it 2nd 

– Find next smallest element, put it 3rd 

– … 
 

• “Loop invariant”: when loop index is i,  

first i elements are the i smallest elements in sorted order 
 

• Time?  

    Best-case  _____     Worst-case  _____     “Average” case ____ 

 

 



Selection Sort 

• Idea:  At step k,  

 find the smallest element among the unsorted elements 

 and put it at position k 
 

• Alternate way of saying this: 

– Find smallest element, put it 1st 

– Find next smallest element, put it 2nd 

– Find next smallest element, put it 3rd 

– … 
 

• “Loop invariant”: when loop index is i,  

first i elements are the i smallest elements in sorted order 
 

• Time?    

    Best-case  O(n2)    Worst-case O(n2)     “Average” case O(n2) 

         Always T(1) = 1 and T(n) = n + T(n-1) 

 

 



Mystery Sort 

This is one implementation of which sorting algorithm (shown for ints)? 

void mystery(int[] arr) { 

  for(int i = 1; i < arr.length; i++) { 

     int tmp = arr[i]; 

     int j; 

     for(j=i; j > 0 && tmp < arr[j-1]; j--) 

        arr[j] = arr[j-1]; 

     arr[j] = tmp; 

  } 

} 

Note:  As with heaps, “moving the hole” is faster than  

       unnecessary swapping (impacts constant factor) 



Insertion Sort vs. Selection Sort 

• They are different algorithms 

 

• They solve the same problem 

 

• Have the same worst-case and average-case asymptotic complexity 

– Insertion-sort has better best-case complexity;  

preferable when input is “mostly sorted” 

 

• Other algorithms are more efficient  

for non-small arrays that are not already almost sorted 

– Small arrays may do well with Insertion sort 

 



Aside: We Will Not Cover Bubble Sort 

• It does not have good asymptotic complexity: O(n2) 

 

• It is not particularly efficient with respect to constant factors 

 

• Almost everything it is good at,  

some other algorithm is at least as good at 

 

• Perhaps some people teach it just because it was taught to them 

 

 
• For fun see: “Bubble Sort: An Archaeological Algorithmic Analysis”, Owen Astrachan, SIGCSE 2003 



Sorting: The Big Picture 

Simple 

algorithms: 

O(n2) 

Fancier 

algorithms: 

O(n log n) 

Comparison 

lower bound: 

(n log n) 

Specialized 

algorithms: 

O(n) 

Handling 

huge data 

sets 

Insertion sort 

Selection sort 

Shell sort 

… 

Heap sort 

Merge sort 

Quick sort (avg) 

… 

Bucket sort 

Radix sort 

External 

sorting 

 



Heap Sort 

• As you are seeing in Project 2, sorting with a heap is easy: 

– insert each arr[i], or better yet do a buildHeap 

– for(i=0; i < arr.length; i++)       

     arr[i] = deleteMin(); 

 

• Worst-case running time: 

 

 

• We have the array-to-sort and the heap 

– So this is not an in-place sort 

– There’s a trick to make it in-place 

O(n log n)   

  Why? 



In-Place Heap Sort 

– Treat the initial array as a heap (via buildHeap) 

– When you delete the ith  element, put it at arr[n-i] 

• That array location is not part of the heap anymore! 

4 7 5 9 8 6 10 3 2 1 

sorted part heap part 

arr[n-i]= 

deleteMin() 

5 7 6 9 8 10 4 3 2 1 

sorted part heap part 

But this reverse sorts –  

how would you fix that? 

Reverse your comparator,  

so you build a maxHeap 



“AVL sort” 

• We can also use a balanced tree to: 

– insert each element: total time O(n log n) 

– Repeatedly deleteMin: total time O(n log n) 

 

• But this cannot be made in-place,  

and it has worse constant factors than heap sort 

– both are O(n log n) in worst, best, and average case 

– neither parallelizes well 

– heap sort is better 

 

• Do not even think about trying to sort with a hash table 

 



Divide and Conquer 

Very important technique in algorithm design 

 

1. Divide problem into smaller parts 

 

2. Independently solve the simpler parts 

– Think recursion 

– Or potential parallelism 

 

3. Combine solution of parts to produce overall solution 

 



Divide-and-Conquer Sorting 

Two great sorting methods are fundamentally divide-and-conquer 

 

1. Mergesort:     Sort the left half of the elements (recursively) 

         Sort the right half of the elements (recursively) 

      Merge the two sorted halves into a sorted whole 

 

2. Quicksort:    Pick a “pivot” element  

     Divide elements into less-than pivot  

       and greater-than pivot 

     Sort the two divisions (recursively on each) 

     Answer is [ sorted-less-than, 

   then pivot, 

  then sorted-greater-than  ] 

     

 



Mergesort 

• To sort array from position lo to position hi: 

– If range is 1 element long, it is already sorted! (our base case) 

– Else, split into two halves:  

• Sort from lo to (hi+lo)/2 

• Sort from (hi+lo)/2 to hi 

• Merge the two halves together 
 

• Merging takes two sorted parts and sorts everything 

– O(n) but requires auxiliary space… 

8 2 9 4 5 3 1 6 a 

 hi 

 0         1        2          3        4         5         6         7 

lo 



Example: Focus on Merging 

Start with:  8 2 9 4 5 3 1 6 

2 4 8 9 1 3 5 6 

Merge:  

Use 3 “fingers” 

and 1 more array 

    (After merge, 

copy back to 

original array) 

aux 

a 

a 

After recursion: 

(for now we just 

assume it works)   



Example: Focus on Merging 

Start with:  8 2 9 4 5 3 1 6 

After recursion: 

(for now we just 

assume it works)   

2 4 8 9 1 3 5 6 

Merge:  

Use 3 “fingers” 

and 1 more array 

1 

    (After merge, 

copy back to 

original array) 

aux 

a 

a 



Example: Focus on Merging 

Start with:  8 2 9 4 5 3 1 6 

2 4 8 9 1 3 5 6 

Merge:  

Use 3 “fingers” 

and 1 more array 

1 2 

    (After merge, 

copy back to 

original array) 

After recursion: 

(for now we just 

assume it works)   

aux 

a 

a 



Example: Focus on Merging 

Start with:  8 2 9 4 5 3 1 6 

2 4 8 9 1 3 5 6 

Merge:  

Use 3 “fingers” 

and 1 more array 

1 2 3 

    (After merge, 

copy back to 

original array) 

After recursion: 

(for now we just 

assume it works)   

aux 

a 

a 



Example: Focus on Merging 

Start with:  8 2 9 4 5 3 1 6 

2 4 8 9 1 3 5 6 

Merge:  

Use 3 “fingers” 

and 1 more array 

1 2 3 4 

    (After merge, 

copy back to 

original array) 

After recursion: 

(for now we just 

assume it works)   

aux 

a 

a 



Example: Focus on Merging 

Start with:  8 2 9 4 5 3 1 6 

2 4 8 9 1 3 5 6 

Merge:  

Use 3 “fingers” 

and 1 more array 

1 2 3 4 5 

    (After merge, 

copy back to 

original array) 

After recursion: 

(for now we just 

assume it works)   

aux 

a 

a 



Example: Focus on Merging 

Start with:  8 2 9 4 5 3 1 6 

2 4 8 9 1 3 5 6 

Merge:  

Use 3 “fingers” 

and 1 more array 

1 2 3 4 5 6 

    (After merge, 

copy back to 

original array) 

After recursion: 

(for now we just 

assume it works)   

aux 

a 

a 



Example: Focus on Merging 

Start with:  8 2 9 4 5 3 1 6 

2 4 8 9 1 3 5 6 

Merge:  

Use 3 “fingers” 

and 1 more array 

1 2 3 4 5 6 8 

    (After merge, 

copy back to 

original array) 

After recursion: 

(for now we just 

assume it works)   

aux 

a 

a 



Example: Focus on Merging 

Start with:  8 2 9 4 5 3 1 6 

2 4 8 9 1 3 5 6 

Merge:  

Use 3 “fingers” 

and 1 more array 

1 2 3 4 5 6 8 9 

    (After merge, 

copy back to 

original array) 

After recursion: 

(for now we just 

assume it works)   

aux 

a 

a 



Example: Focus on Merging 

Start with:  8 2 9 4 5 3 1 6 

2 4 8 9 1 3 5 6 

Merge:  

Use 3 “fingers” 

and 1 more array 

1 2 3 4 5 6 8 9 

    (After merge, 

copy back to 

original array) 

1 2 3 4 5 6 8 9 

After recursion: 

(for now we just 

assume it works)   

aux 

a 

a 

a 



Example: Mergesort Recursion 

8  2   9   4 5   3   1   6 

8   2 1   6 9   4 5   3 

8     2 

   2   8 

        2   4   8   9 

        1   2   3   4   5   6   8   9 

Merge 

Merge 

Merge 

Divide 

Divide 

Divide 

1 Element 

8 2 9 4 5 3 1 6 

9       4 5      3 1     6 

4    9  3   5  1   6 

      1   3   5   6 



Mergesort: Some Time Saving Details 

• What if the final steps of our merge looked like this: 

 

 

 

 

 

 

 

 

• Wasteful to copy to the auxiliary array just to copy back… 

2 4 5 6 1 3 8 9 

1 2 3 4 5 6 

Main array 

 

 

 

 

Auxiliary array 



Mergesort: Some Time Saving Details 

• If left-side finishes first, just stop the merge and copy back: 

 

 

 

 

 

• If right-side finishes first, copy dregs into right then copy back: 

copy 

first 

second 



Mergesort: Saving Space and Copying 

Simplest / Worst:  

 Use a new auxiliary array of size (hi-lo) for every merge 
 

Better: 

 Use a new auxiliary array of size n for every merging stage 
 

Better: 

 Reuse same auxiliary array of size n for every merging stage 
 

Best: 

 Do not copy back after merge, instead swap usage of the 

original and auxiliary array (i.e., even levels move to auxiliary 

array, odd levels move back to original array) 

– Need one copy at end if number of stages is odd 



Swapping Original and Auxiliary Array 

• First recurse down to lists of size 1 

• As we return from the recursion, swap between arrays 

 

 

 

 

 

 

 

 

 

 

 

• Arguably easier to code without using recursion at all 

Merge by 1 

 

Merge by 2 

 

Merge by 4 

 

Merge by 8 

 

Merge by 16 

 

Copy if Needed 



Mergesort Analysis 

Having defined an algorithm and argued it is correct,  

we can analyze its running time and space: 

 

To sort n elements, we: 

– Return immediately if n=1 

– Else do 2 subproblems of size n/2 and then an O(n) merge 

 

Recurrence relation: 

  T(1) = c1 

      T(n) = 2T(n/2) + c2n 



Mergesort Analysis 

This recurrence is common enough you just “know” it’s O(n log n) 

 

Merge sort is relatively easy to intuit (best, worst, and average): 

• The recursion “tree” will have log n height 

• At each level we do a total amount of merging equal to n 



Quicksort 

• Also uses divide-and-conquer 

– Recursively chop into halves 

– Instead of doing all the work as we merge together,  

we will do all the work as we recursively split into halves 

– Unlike MergeSort, does not need auxiliary space 
 

• O(n log n) on average, but O(n2) worst-case 

– MergeSort is always O(n log n) 

– So why use QuickSort at all? 
 

• Can be faster than Mergesort 

– Believed by many to be faster 

– Quicksort does fewer copies and more comparisons,  

so it depends on the relative cost of these two operations! 



Quicksort Overview 

1. Pick a pivot element 

 

2. Partition all the data into: 

A. The elements less than the pivot 

B. The pivot 

C. The elements greater than the pivot 

 

3. Recursively sort A and C 

 

4. The answer is as simple as “A, B, C”  

 

Alas, there are some details lurking in this algorithm 

 

 



Quicksort: Think in Terms of Sets 

13 
81 

92 

43 

65 

31 57 

26 

75 
0 

S select pivot value 

13 
81 

92 

43 65 
31 

57 26 

75 
0 S1 S2 partition S 

13 43 31 57 26 0 

S1 
81 92 75 65 

S2 
QuickSort(S1) and 

QuickSort(S2) 

13 43 31 57 26 0 65 81 92 75 S Presto!  S is sorted 

[Weiss] 



Example: Quicksort Recursion 

2  4   3   1 8   9   6 

2   1 9 4 6 

        2                

   1   2                   

        1   2   3   4 

        1   2   3   4   5   6   8   9 

Conquer 

Conquer 

Conquer 

Divide 

Divide 

Divide 

1 element 

8 2 9 4 5 3 1 6 

5 

8 
3 

1 

6   8   9 



Quicksort Details 

We have not explained: 

 

• How to pick the pivot element 

– Any choice is correct: data will end up sorted 

– But we want the two partitions to be about equal in size 

 

• How to implement partitioning 

– In linear time 

– In place 



Pivots 

• Best pivot? 

– Median 

– Halve each time 

 

 

 

• Worst pivot? 

– Greatest/least element 

– Problem of size n - 1 

– O(n2) 

2  4   3   1 8   9   6 

8 2 9 4 5 3 1 6 

5 

8  2  9  4  5  3  6 

8 2 9 4 5 3 1 6 

1 



Quicksort: Potential Pivot Rules 

While sorting arr from lo (inclusive) to hi (exclusive): 

 

• Pick arr[lo] or arr[hi-1] 

– Fast, but worst-case occurs with approximately sorted input 

 

• Pick random element in the range 

– Does as well as any technique 

• But random number generation can be slow 

• Still probably the most elegant approach 

 

• Median of 3, (e.g., arr[lo], arr[hi-1], arr[(hi+lo)/2]) 

– Common heuristic that tends to work well 



Partitioning 

• Conceptually simple, but hardest part to code up correctly 

– After picking pivot, need to partition in linear time in place 

 

• One approach (there are slightly fancier ones): 

1. Swap pivot with arr[lo] 

2. Use two fingers i and j, starting at lo+1 and hi-1 

3. while (i < j) 

   if (arr[j] >= pivot) j-- 

   else if (arr[i] =< pivot) i++ 

   else swap arr[i] with arr[j] 

4. Swap pivot with arr[i] 



Quicksort Example 

• Step One: Pick Pivot as Median of 3 

– lo = 0, hi = 10 

 

 

• Step Two: Move Pivot to the lo Position 

 

6 1 4 9 0 3 5 2 7 8 
0 1 2 3 4 5 6 7 8 9 

8 1 4 9 0 3 5 2 7 6 
0 1 2 3 4 5 6 7 8 9 



Quicksort Example 

Now partition in place 

 

 

Move fingers 

 

 

Swap 

 

Move fingers 

 

 

Move pivot 

 

6 1 4 9 0 3 5 2 7 8 

6 1 4 9 0 3 5 2 7 8 

6 1 4 2 0 3 5 9 7 8 

6 1 4 2 0 3 5 9 7 8 

Often have more than  

one swap during partition –  

this is a short example 

5 1 4 2 0 3 6 9 7 8 



Quicksort Analysis 

• Best-case: Pivot is always the median 

  T(0)=T(1)=1 

  T(n)=2T(n/2) + n           -- linear-time partition 

  Same recurrence as mergesort: O(n log n) 

 

• Worst-case: Pivot is always smallest or largest element 

  T(0)=T(1)=1 

              T(n) = 1T(n-1)  + n    

  Basically same recurrence as selection sort: O(n2) 

 

• Average-case (e.g., with random pivot) 

– O(n log n) (see text) 

 



Quicksort Cutoffs 

• For small n, recursion tends to cost more than a quadratic sort 

– Remember asymptotic complexity is for large n 

– Also, recursive calls add a lot of overhead for small n 

 

• Common technique: switch algorithm below a cutoff 

– Reasonable rule of thumb: use insertion sort for n < 10 

 

• Notes: 

– Could also use a cutoff for merge sort 

– Cutoffs are also the norm with parallel algorithms  

• Switch to sequential algorithm 

– None of this affects asymptotic complexity 



Quicksort Cutoff Skeleton 

void quicksort(int[] arr, int lo, int hi) { 

  if(hi – lo < CUTOFF) 

     insertionSort(arr,lo,hi); 

  else 

     … 

} 

This cuts out the vast majority of the recursive calls  

–   Think of the recursive calls to quicksort as a tree 

–   Trims out the bottom layers of the tree 
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Sorting: The Big Picture 

Simple 

algorithms: 

O(n2) 

Fancier 

algorithms: 

O(n log n) 

Comparison 

lower bound: 

(n log n) 

Specialized 

algorithms: 

O(n) 

Handling 

huge data 

sets 

Insertion sort 

Selection sort 

Shell sort 

… 

Heap sort 

Merge sort 

Quick sort (avg) 

… 

Bucket sort 

Radix sort 

External 

sorting 

 



Divide-and-Conquer Sorting 

Two great sorting methods are fundamentally divide-and-conquer 

 

1. Mergesort:     Sort the left half of the elements (recursively) 

         Sort the right half of the elements (recursively) 

      Merge the two sorted halves into a sorted whole 

 

2. Quicksort:    Pick a “pivot” element  

     Divide elements into less-than pivot  

       and greater-than pivot 

     Sort the two divisions (recursively on each) 

     Answer is [ sorted-less-than, 

   then pivot, 

  then sorted-greater-than  ] 

     

 



Quicksort Analysis 

• Best-case: Pivot is always the median 

  T(0)=T(1)=1 

  T(n)=2T(n/2) + n           -- linear-time partition 

  Same recurrence as mergesort: O(n log n) 

 

• Worst-case: Pivot is always smallest or largest element 

  T(0)=T(1)=1 

              T(n) = 1T(n-1)  + n    

  Basically same recurrence as selection sort: O(n2) 

 

• Average-case (e.g., with random pivot) 

– O(n log n) (see text) 

 



Quicksort Cutoffs 

• For small n, recursion tends to cost more than a quadratic sort 

– Remember asymptotic complexity is for large n 

– Also, recursive calls add a lot of overhead for small n 

 

• Common technique: switch algorithm below a cutoff 

– Reasonable rule of thumb: use insertion sort for n < 10 

 

• Notes: 

– Could also use a cutoff for merge sort 

– Cutoffs are also the norm with parallel algorithms  

• Switch to sequential algorithm 

– None of this affects asymptotic complexity 



Quicksort Cutoff Skeleton 

void quicksort(int[] arr, int lo, int hi) { 

  if(hi – lo < CUTOFF) 

     insertionSort(arr,lo,hi); 

  else 

     … 

} 

This cuts out the vast majority of the recursive calls  

–   Think of the recursive calls to quicksort as a tree 

–   Trims out the bottom layers of the tree 



Linked Lists and Big Data 

We defined sorting over an array, but sometimes you want to sort lists 
 

One approach: 

– Convert to array: O(n), Sort: O(n log n), Convert to list: O(n) 
 

Mergesort can very nicely work directly on linked lists 

– heapsort and quicksort do not 

– insertion sort and selection sort can, but they are slower 
 

Mergesort is also the sort of choice for external sorting 

– Quicksort and Heapsort jump all over the array 

– Mergesort scans linearly through arrays 

– In-memory sorting of blocks can be combined with larger sorts 

– Mergesort can leverage multiple disks 



The Big Picture 

Simple 

algorithms: 

O(n2) 

Fancier 

algorithms: 

O(n log n) 

Comparison 

lower bound: 

(n log n) 

Specialized 

algorithms: 

O(n) 

Handling 

huge data 

sets 

Insertion sort 

Selection sort 

Shell sort 

… 

Heap sort 

Merge sort 

Quick sort (avg) 

… 

Bucket sort 

Radix sort 

External 

sorting 

 



How Fast can we Sort? 

• Heapsort & Mergesort have O(n log n) worst-case running time 

 

• Quicksort has O(n log n) average-case running times 

 

• These bounds are all tight, actually (n log n) 

 

• So maybe we need to dream up another algorithm with a lower 
asymptotic complexity, such as O(n) or O(n  log log n) 

– Instead we prove that this is impossible when the primary 

operation is comparison of pairs of elements 



Permutations 

• Assume we have n elements to sort  

– And for simplicity, assume none are equal (i.e., no duplicates) 

 

• How many permutations of the elements (possible orderings)? 

 

• Example, n=3 

  a[0]<a[1]<a[2] a[0]<a[2]<a[1] a[1]<a[0]<a[2] 

      a[1]<a[2]<a[0] a[2]<a[0]<a[1] a[2]<a[1]<a[0] 

      6 possible orderings 

 

• In general, n choices for first, n-1 for next, n-2 for next, etc. 

– n(n-1)(n-2)…(2)(1) = n! possible orderings 

 



Representing Every Comparison Sort 

• Algorithm must “find” the right answer among n! possible answers 

 

• Starts “knowing nothing” and gains information with each comparison 

– Intuition is that each comparison can, at best, 

eliminate half of the remaining possibilities 

 

• Can represent this process as a decision tree 

– Nodes contain “remaining possibilities” 

– Edges are “answers from a comparison” 

– This is not a data structure, it’s what our proof uses  

to represent “the most any algorithm could know” 



Decision Tree for n = 3 

a < b < c, b < c < a, 

a < c < b, c < a < b, 

b < a < c, c < b < a  

a < b < c 

a < c < b 

c < a < b 

b < a < c  

b < c < a 

c < b < a 

a < b < c 

a < c < b 

c < a < b 

a < b < c a < c < b 

 b < a < c  

b < c < a 

c < b < a 

b < c < a  b < a < c  

a < b a > b 

a > c a < c 

b < c b > c 

b < c b > c  

c < a c > a 

a ? b 

The leaves contain all the possible orderings of a, b, c 



What the Decision Tree Tells Us 

• A binary tree because each comparison has 2 outcomes 

– No duplicate elements 

– Assume algorithm not so dumb as to ask redundant questions 

 

• Because any data is possible, any algorithm needs to ask enough 

questions to decide among all n! answers 

– Every answer is a leaf (no more questions to ask) 

– So the tree must be big enough to have n! leaves 

– Running any algorithm on any input will at best  

correspond to one root-to-leaf path in the decision tree 

– So no algorithm can have worst-case running time  

better than the height of the decision tree 



Example 

a < b < c, b < c < a, 

a < c < b, c < a < b, 

b < a < c, c < b < a  

a < b < c 

a < c < b 

c < a < b 

b < a < c  

b < c < a 

c < b < a 

a < b < c 

a < c < b 

c < a < b 

a < b < c a < c < b 

 b < a < c  

b < c < a 

c < b < a 

b < c < a  b < a < c  

a < b a > b 

a > c a < c 

b < c b > c 

b < c b > c  

c < a c > a 

a ? b 

possible orders 

actual order 



Where are We 

Proven: No comparison sort can have worst-case better than:  

   the height of a binary tree with n! leaves 

– Turns out average-case is same asymptotically 

– So how tall is a binary tree with n! leaves? 

 

Now: Show that a binary tree with n! leaves has height (n log n) 

– n log n is the lower bound, the height must be at least this 

– It could be more (in other words, your comparison sorting 

algorithm could take longer than this, but can not be faster) 

– Factorial function grows very quickly 

 

Conclude that: (Comparison) Sorting is  (n log n) 

– This is an amazing computer-science result: proves all the 

clever programming in the world can’t sort in linear time! 



Lower Bound on Height 

• The height of a binary tree with L leaves is at least log2 L 
 

• So the height of our decision tree, h: 
 

   h  log2 (n!)                                                  property of binary trees 

      = log2 (n*(n-1)*(n-2)…(2)(1))         definition of factorial 

      = log2 n + log2 (n-1) + … + log2 1         property of logarithms 

       log2 n + log2 (n-1) + … + log2 (n/2)    keep first n/2 terms 

        (n/2) log2 (n/2)          each of the n/2 terms left is  log2 (n/2) 

   (n/2)(log2 n - log2 2)          property of logarithms 

   (1/2)nlog2 n – (1/2)n       arithmetic 

      “=“  (n log n) 



The Big Picture 

Simple 

algorithms: 

O(n2) 

Fancier 

algorithms: 

O(n log n) 

Comparison 

lower bound: 

(n log n) 

Specialized 

algorithms: 

O(n) 

Handling 

huge data 

sets 

Insertion sort 

Selection sort 

Shell sort 

… 

Heap sort 

Merge sort 

Quick sort (avg) 

… 

Bucket sort 

Radix sort 

External 

sorting 



BucketSort (a.k.a. BinSort) 

• If all values to be sorted are known to be integers  

between 1 and K (or any small range),  

– Create an array of size K  

– Put each element in its proper bucket (a.ka. bin) 

– If data is only integers, no need to store anything more  

than a count of how times that bucket has been used 

• Output result via linear pass through array of buckets 

count array 

1 

2 

3 

4 

5 

Example:  

K=5 

Input:  (5,1,3,4,3,2,1,1,5,4,5) 

   Output: 



BucketSort (a.k.a. BinSort) 

• If all values to be sorted are known to be integers  

between 1 and K (or any small range),  

– Create an array of size K  

– Put each element in its proper bucket (a.ka. bin) 

– If data is only integers, no need to store anything more  

than a count of how times that bucket has been used 

• Output result via linear pass through array of buckets 

count array 

1 3 

2 1 

3 2 

4 2 

5 3 

Example:  

K=5 

Input (5,1,3,4,3,2,1,1,5,4,5) 

   Output: 



BucketSort (a.k.a. BinSort) 

• If all values to be sorted are known to be integers  

between 1 and K (or any small range),  

– Create an array of size K  

– Put each element in its proper bucket (a.ka. bin) 

– If data is only integers, no need to store anything more  

than a count of how times that bucket has been used 

• Output result via linear pass through array of buckets 

count array 

1 3 

2 1 

3 2 

4 2 

5 3 

Example:  

K=5 

Input (5,1,3,4,3,2,1,1,5,4,5) 

   Output: 1,1,1,2,3,3,4,4,5,5,5 

What is the running time? 



Analyzing Bucket Sort 

• Overall: O(n+K) 

– Linear in n, but also linear in K 

– (n log n) lower bound does not apply  

because this is not a comparison sort 

 

• Good when K is smaller (or not much larger) than n 

– Do not spend time doing comparisons of duplicates 

 

• Bad when K is much larger than n 

– Wasted space; wasted time during final linear O(K) pass 

 

• For data in addition to integer keys, use list at each bucket 

 



Bucket Sort with Data 

• For data in addition to integer keys, use list at each bucket 

 

 

 

 

 

 

 

 

 

• Bucket sort illustrates a more general trick 

– Imagine a heap for a small range of integer priorities 

count array 

1 

2 

3 

4 

5 

Twilight 

Harry Potter 

Gattaca Star Wars 



Radix Sort 

• Radix = “the base of a number system” 

– Examples will use 10 because we are familiar with that 

– In implementations use larger numbers 

• For example, for ASCII strings, might use 128 

 

• Idea: 

– Bucket sort on one digit at a time 

• Number of buckets = radix 

• Starting with least significant digit, sort with Bucket Sort 

• Keeping sort stable 

– Do one pass per digit 

– After k passes, the last k digits are sorted 
 

 

• Aside: Origins go back to the 1890 U.S. census 



67 

123 

38 

3 

721 

9 

537 

478 

Bucket sort  

by 1’s digit 

0 1 

721 

2 3 

3 

123 

4 5 6 7 

537 

67 

8 

478 

38 

9 

9 

Input data 

This example uses B=10 and base 10 

digits for simplicity of demonstration.  

Larger bucket counts should be used in 

an actual implementation. 

Example: Radix Sort: Pass #1 

721 

3 

123 

537 

67 

478 

38 

9 

After 1st pass 



Bucket sort  

by 10’s digit 

0 

03 

09 

1 2 

721 

123 

 

3 

537 

38 

4 5 6 

67 

7 

478 

8 

 

 

9 

Example: Radix Sort: Pass #2 

721 

3 

123 

537 

67 

478 

38 

9 

After 1st pass After 2nd pass 
3 

9 

721 

123 

537 

38 

67 

478 



Bucket sort  

by 100’s digit 

0 

003 

009 

038 

067 

1 

123 

2 

 

 

 

3 

 

 

4 

478 

5 

537 

6 7 

721 

8 

 

 

9 

Example: Radix Sort: Pass #3 

After 2nd pass 
3 

9 

721 

123 

537 

38 

67 

478 

After 3rd pass 
3 

9 

38 

67 

123 

478 

537 

721 

Invariant: after k passes the low order k digits are sorted. 



Analysis 

Input size: n 

Number of buckets = Radix: B 

Number of passes = “Digits”: P 
 

Work per pass is 1 bucket sort: O(B+n) 
 

Total work is O(P(B+n)) 
 

Compared to comparison sorts, sometimes a win, but often not 

• Example: Strings of English letters up to length 15 

– 15*(52 + n)  

– This is less than n log n only if n > 33,000 

• Of course, cross-over point depends on  

constant factors of the implementations  

 



Last Slide on Sorting 

• Simple O(n2) sorts can be fastest for small n 

– selection sort, insertion sort (which is linear for mostly-sorted) 

– good for “below a cut-off” to help divide-and-conquer sorts 

• O(n log n) sorts 

– heap sort, in-place but not stable nor parallelizable 

– merge sort, not in place but stable and works as external sort 

– quick sort, in place but not stable and O(n2) in worst-case 

• often fastest, but depends on costs of comparisons/copies 

•  (n log n) worst and average bound for comparison sorting 

• Non-comparison sorts 

– Bucket sort good for small number of key values 

– Radix sort uses fewer buckets and more phases 

 

• Best way to sort?     It depends! 
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