
CSE332: Data Abstractions

Lecture 21: Readers/Writer Locking

James Fogarty

Winter 2012

Including slides developed in part by

Ruth Anderson, James Fogarty, Dan Grossman

Reading vs. Writing

Recall:

– Multiple concurrent reads of same memory: Not a problem

– Multiple concurrent writes of same memory: Problem

– Multiple concurrent read & write of same memory: Problem

So far:

– If concurrent write/write or read/write might occur,

use synchronization to ensure one-thread-at-a-time

But this is unnecessarily conservative:

– Could still allow multiple simultaneous readers!

Example

Consider a hashtable with one coarse-grained lock

– So only one thread can perform operations at a time

But suppose:

– There are many simultaneous lookup operations

– insert operations are very rare

Note: Important that lookup does not actually mutate shared

 memory, like a move-to-front list operation would

Readers/Writer locks

A new synchronization ADT: The readers/writer lock

• A lock’s states fall into three categories:

– “not held”

– “held for writing” by one thread

– “held for reading” by one or more threads

• new: make a new lock, initially “not held”

• acquire_write: block if currently “held for reading”

if or “held for writing”, else make “held for writing”

• release_write: make “not held”

• acquire_read: block if currently “held for writing”, else

make/keep “held for reading” and increment readers count

• release_read: decrement readers count, if 0, make “not held”

0  writers  1

0  readers
writers*readers==0

Pseudocode Example (not Java)

class Hashtable<K,V> {

 …

 // coarse-grained, one lock for table

 RWLock lk = new RWLock();

 V lookup(K key) {

 int bucket = hasher(key);

 lk.acquire_read();

 … read array[bucket] …

 lk.release_read();

 }

 void insert(K key, V val) {

 int bucket = hasher(key);

 lk.acquire_write();

 … write array[bucket] …

 lk.release_write();

 }

}

Readers/Writer Lock Details

• A readers/writer lock implementation (which is “not our problem”)

usually gives priority to writers:

– After a writer blocks,

no readers arriving later will get the lock before the writer

– Otherwise an insert could starve

• Re-entrant?

– Mostly an orthogonal issue

– But some libraries support upgrading from reader to writer

• Why not use readers/writer locks with more fine-grained locking?

– Like on each bucket?

– Not wrong, but likely not worth it due to low contention

In Java

[Note: Not needed in your project/homework]

Java’s synchronized statement does not support readers/writer

Instead, library

java.util.concurrent.locks.ReentrantReadWriteLock

• Different interface: methods readLock and writeLock

return objects that themselves have lock and unlock methods

• Does not have writer priority or reader-to-writer upgrading

– Always read the documentation

Motivating Condition Variables

To motivate condition variables, consider the canonical example

of a bounded buffer for sharing work among threads

Bounded buffer: A queue with a fixed size

– Only slightly simpler if unbounded, core need still arises

For sharing work – think an assembly line:

– Producer thread(s) do some work and enqueue result objects

– Consumer thread(s) dequeue objects and do next stage

– Must synchronize access to the queue

f e d c buffer

back front

producer(s)

enqueue

consumer(s)

dequeue

First Attempt

class Buffer<E> {

 E[] array = (E[])new Object[SIZE];

 … // front, back fields, isEmpty, isFull methods

 synchronized void enqueue(E elt) {

 if(isFull())

 ???

 else

 … add to array and adjust back …

 }

 synchronized E dequeue()

 if(isEmpty())

 ???

 else

 … take from array and adjust front …

 }

}

Waiting

• enqueue to a full buffer should not raise an exception

– Wait until there is room

• dequeue from an empty buffer should not raise an exception

– Wait until there is data

Bad approach is to spin (wasted work and keep grabbing lock)

 void enqueue(E elt) {

 while(true) {

 synchronized(this) {

 if(isFull()) continue;

 … add to array and adjust back …

 return;

}}}

// dequeue similar

What we Want

• Better would be for a thread to wait until it can proceed

– Be notified when it should try again

– In the meantime, let other threads run

• Like locks, not something you can implement on your own

– Language or library gives it to you,

typically implemented with operating-system support

• An ADT that supports this: condition variable

– Informs waiter(s) when the condition that

causes it/them to wait has varied

• Terminology not completely standard; will mostly stick with Java

Java Approach: Not Quite Right

class Buffer<E> {

 …

 synchronized void enqueue(E elt) {

 if(isFull())

 this.wait(); // releases lock and waits

 add to array and adjust back

 if(buffer was empty)

 this.notify(); // wake somebody up

 }

 synchronized E dequeue() {

 if(isEmpty())

 this.wait(); // releases lock and waits

 take from array and adjust front

 if(buffer was full)

 this.notify(); // wake somebody up

 }

}

Key Ideas

• Java weirdness: every object “is” a condition variable (also a lock)

– other languages/libraries often make them separate

• wait:

– “register” running thread as interested in being woken up

– then atomically: release the lock and block

– when execution resumes, thread again holds the lock

• notify:

– pick one waiting thread and wake it up

– no guarantee woken up thread runs next, just that it is no

longer blocked on the condition, now waiting for the lock

– if no thread is waiting, then do nothing

Bug

Between the time a thread is notified and it re-acquires the lock,

the condition can become false again!

synchronized void enqueue(E elt){

 if(isFull())

 this.wait();

 add to array and adjust back

 …

}

if(isFull())

 this.wait();

add to array

T
im

e

Thread 2 (dequeue) Thread 1 (enqueue)

take from array

if(was full)
this.notify();

make full again

Thread 3 (enqueue)

Bug Fix

Guideline: Always re-check the condition after re-gaining the lock

– For obscure reasons, Java is technically allowed to notify a
thread spuriously (i.e., for no reason without any call to notify)

synchronized void enqueue(E elt) {

 while(isFull())

 this.wait();

 …

}

synchronized E dequeue() {

 while(isEmpty())

 this.wait();

 …

}

Another Bug

• If multiple threads are waiting, we wake up only one

– Sure only one can do work now, but cannot forget the others!

while(isFull())

 this.wait();

…

T
im

e

Thread 2 (enqueue) Thread 1 (enqueue)

// dequeue #1

if(buffer was full)

 this.notify();

// dequeue #2

if(buffer was full)

 this.notify();

Thread 3 (dequeues)

while(isFull())

 this.wait();

…

Bug Fix

notifyAll wakes up all current waiters on the condition variable

Guideline: If in any doubt, use notifyAll

– Wasteful waking is much better than never waking up

(because you already need to re-check condition)

• So why does notify exist?

– Well, it is faster when correct…

synchronized void enqueue(E elt) {

 …

 if(buffer was empty)

 this.notifyAll(); // wake everybody up

}

synchronized E dequeue() {

 …

 if(buffer was full)

 this.notifyAll(); // wake everybody up

}

Alternate Approach

• An alternative is to call notify (not notifyAll) on every

enqueue / dequeue, not just when the buffer was empty / full

– Easy: just remove the if statement

• Alas, makes our code subtly wrong since it is technically possible
that an enqueue and a dequeue are both waiting.

– See notes for the step-by-step details of how this can happen

• Works fine if buffer is unbounded because only dequeuers wait

Alternate Approach Fixed

• The alternate approach works if the enqueuers and

dequeuers wait on different condition variables

– But for mutual exclusion both condition variables

must be associated with the same lock

• Java’s “everything is a lock / condition variable” does not

support this: each condition variable is associated with itself

• Instead, Java has classes in java.util.concurrent.locks

for when you want multiple conditions with one lock

– class ReentrantLock has a method newCondition

that returns a new Condition object associate with the lock

– See the documentation if curious

Final Comments on Condition-Variable

• notify/notifyAll often called

signal/broadcast or pulse/pulseAll

• Condition variables are subtle and harder to use than locks

• But when you need them, you need them

– Spinning and other work-arounds do not work well

• Fortunately, like most things you see in a data-structures course,

the common use-cases are provided in libraries written by experts

– Example:
java.util.concurrent.ArrayBlockingQueue<E>

• All condition variables hidden; just call put and take

Concurrency summary

• Access to shared resources introduces new kinds of bugs

– Data races

– Critical sections too small

– Critical sections use wrong locks

– Deadlocks

• Requires synchronization

– Locks for mutual exclusion (common, various flavors)

– Condition variables for signaling others (less common)

• Guidelines for correct use help avoid common pitfalls

• Not always clear shared-memory is worth the pain

– But other models not a panacea (e.g., message passing)

