CSE332: Data Abstractions
Lecture 21: Readers/Writer Locking

James Fogarty
Winter 2012

Including slides developed in part by
Ruth Anderson, James Fogarty, Dan Grossman

Reading vs. Writing

Recall:
— Multiple concurrent reads of same memory: Not a problem
— Multiple concurrent writes of same memory: Problem
— Multiple concurrent read & write of same memory: Problem

So far:

— If concurrent write/write or read/write might occur,
use synchronization to ensure one-thread-at-a-time

But this is unnecessarily conservative:
— Could still allow multiple simultaneous readers!

Example

Consider a hashtable with one coarse-grained lock
— So only one thread can perform operations at a time

But suppose:
— There are many simultaneous lookup operations

— insert operations are very rare

Note: Important that lookup does not actually mutate shared
memory, like a move-to-front list operation would

Readers/Writer locks

A new synchronization ADT: The readers/writer lock

- A Io“ck S statfs fall into three categories: 0 < writers < 1
— “not held 0 <readers
— “held for writing” by one thread writers*readers==

— “held for reading” by one or more threads

« new: make a new lock, initially “not held”

« acquire write: block if currently “held for reading”
if or “held for writing”, else make “held for writing”

« release write: make “not held”

 acquire read: block if currently “held for writing”, else
make/kee?) “held for reading” and increment readers count

- release read: decrementreaders count, if 0, make “not held”

Pseudocode Example (not Java)

class Hashtable<K,V> {

// coarse-grained, one lock for table

RWLock lk = new RWLock() ;

V lookup (K key) ({
int bucket = hasher (key) ;
lk.acquire read();
. read array[bucket] ..
lk.release read()

}

void insert (K key, V wval) {
int bucket = hasher (key) ;
lk.acquire write();
. write array[bucket] ..
lk.release write();

}

Readers/Writer Lock Detalls

* A readers/writer lock implementation (which is “not our problem”)
usually gives priority to writers:

— After a writer blocks,
no readers arriving later will get the lock before the writer

— Otherwise an insert could starve

* Re-entrant?
— Mostly an orthogonal issue
— But some libraries support upgrading from reader to writer

* Why not use readers/writer locks with more fine-grained locking?
— Like on each bucket?
— Not wrong, but likely not worth it due to low contention

In Java

[Note: Not needed in your project/homework]

Java’'s synchronized statement does not support readers/writer

Instead, library
java.util.concurrent.locks.ReentrantReadWriteLock

« Different interface: methods readLock and writeLock
return objects that themselves have 1lock and unlock methods

« Does not have writer priority or reader-to-writer upgrading
— Always read the documentation

Motivating Condition Variables

producer(s) buffer flejd|c consumer(s)
8

enqueue s 4 baclI i *+,n dequeue

| | |

| | — — |

| | — — |

To motivate condition variables, consider the canonical example
of a bounded buffer for sharing work among threads

Bounded buffer: A queue with a fixed size
— Only slightly simpler if unbounded, core need still arises

For sharing work — think an assembly line:
— Producer thread(s) do some work and enqueue result objects
— Consumer thread(s) dequeue objects and do next stage
— Must synchronize access to the queue

First Attempt

class Buffer<iE> {
E[] array = (E[])new Object[SIZE];
.. // front, back fields, isEmpty, isFull methods
synchronized void enqueue(E elt) {
if (isFull())
2?7
else

. add to array and adjust back ..
}

synchronized E dequeue ()
if (isEmpty ())
?7?7
else
. take from array and adjust front ..

Waiting

« enqueue to a full buffer should not raise an exception
— Wait until there is room

« dequeue from an empty buffer should not raise an exception
— Wait until there is data

Bad approach is to spin (wasted work and keep grabbing lock)

void enqueue (E elt) ({
while (true) {
synchronized (this) {
if(isFull()) continue;
. add to array and adjust back ..
return;

}h)

// dequeue similar

What we Want

Better would be for a thread to wait until it can proceed
— Be notified when it should try again
— In the meantime, let other threads run

Like locks, not something you can implement on your own

— Language or library gives it to you,
typically implemented with operating-system support

An ADT that supports this: condition variable

— Informs waiter(s) when the condition that
causes it/them to wait has varied

Terminology not completely standard; will mostly stick with Java

Java Approach: Not Quite Right

class Buffer<iE> {

synchronized void enqueue (E elt) {
if (isFull())
this.wait(); // releases lock and waits
add to array and adjust back
if (buffer was empty)
this.notify(); // wake somebody up
}
synchronized E dequeue () ({
if (isEmpty ())
this.wait(); // releases lock and waits
take from array and adjust front
if (buffer was full)
this.notify(); // wake somebody up

Key ldeas

« Java weirdness: every object “is” a condition variable (also a lock)
— other languages/libraries often make them separate

e wait:
— “register” running thread as interested in being woken up
— then atomically: release the lock and block
— when execution resumes, thread again holds the lock

e notify:
— pick one waiting thread and wake it up

— no guarantee woken up thread runs next, just that it is no
longer blocked on the condition, now waiting for the lock

— 1f no thread is waiting, then do nothing

Time

Bug
synchronized void enqueue (E elt) {
if (isFull())
this.wait () ;
add to array and adjust back

}

Between the time a thread is notified and it re-acquires the lock,
the condition can become false again!

Thread 1 (enqueue) Thread 2 (dequeue) Thread 3 (enqueue)
if (isFull())
this.wait () ;
take from array

if (was full)
this.notify () ;

make full again

add to array

Bug Fix

synchronized void enqueue (E elt) {
while (isFull())
this.wait () ;

}
synchronized E dequeue() {
while (isEmpty ())
this.wait() ;

Guideline: Always re-check the condition after re-gaining the lock

— For obscure reasons, Java is technically allowed to notify a
thread spuriously (i.e., for no reason without any call to notify)

Time

Another Bug

« If multiple threads are waiting, we wake up only one
— Sure only one can do work now, but cannot forget the others!

Thread 1 (enqueue) Thread 2 (enqueue) Thread 3 (dequeues)
while (isFull ()) while (isFull())
this.wait () ; this.wait () ;
// dequeue #1
if (buffer was full)
this.notify () ;

// dequeue #2
if (buffer was full)
this.notify () ;

Bug Fix

synchronized void enqueue (E elt) {

if (buffer was empty)
this.notifyAll(); // wake everybody up

}
synchronized E dequeue() ({

if (buffer was full)
this.notifyAll(); // wake everybody up

}
notifyAll wakes up all current waiters on the condition variable

Guideline: If in any doubt, use notifyAll

— Wasteful waking is much better than never waking up
(because you already need to re-check condition)

* S0 why does notify exist?
— Well, it is faster when correct...

Alternate Approach

An alternative is to call notify (not notifyAll) on every
enqueue / dequeue, not just when the buffer was empty / full

— Easy: just remove the if statement

Alas, makes our code subtly wrong since it is technically possible
that an enqueue and a dequeue are both waiting.

— See notes for the step-by-step details of how this can happen

Works fine if buffer is unbounded because only dequeuers wait

Alternate Approach Fixed

The alternate approach works if the enqueuers and
dequeuers wait on different condition variables

— But for mutual exclusion both condition variables
must be associated with the same lock

Java’s “everything is a lock / condition variable” does not
support this: each condition variable is associated with itself

Instead, Java has classes in java.util.concurrent.locks
for when you want multiple conditions with one lock

— class ReentrantLock has a method newCondition
that returns a new Condition object associate with the lock

— See the documentation if curious

Final Comments on Condition-Variable

« notify/notifyAll often called
signal/broadcast or pulse/pulseAll

 Condition variables are subtle and harder to use than locks

« But when you need them, you need them
— Spinning and other work-arounds do not work well

« Fortunately, like most things you see In a data-structures course,
the common use-cases are provided in libraries written by experts

— Example:
java.util.concurrent.ArrayBlockingQueue<E>

« All condition variables hidden; just call put and take

Concurrency summary

» Access to shared resources introduces new kinds of bugs
— Data races
— Ciritical sections too small
— Critical sections use wrong locks
— Deadlocks

* Requires synchronization
— Locks for mutual exclusion (common, various flavors)
— Condition variables for signaling others (less common)

« Guidelines for correct use help avoid common pitfalls

« Not always clear shared-memory is worth the pain
— But other models not a panacea (e.g., message passing)

