
CSE332: Data Abstractions

Lecture 20: Mutual Exclusion and Locking

James Fogarty

Winter 2012

Including slides developed in part by

Ruth Anderson, James Fogarty, Dan Grossman

Pick From These 3 Choices for Memory:

For every memory location in your program (e.g., object field),

you must obey at least one of the following:

1. Thread-local: Do not use the location in > 1 thread

2. Immutable: Do not write to the memory location

3. Synchronized: Use synchronization to control access

all memory thread-local

memory
immutable

memory

need

synchronization

Thread-Local

Whenever possible, do not share resources

– Easier for each thread have its own thread-local

copy of a resource instead of one with shared updates

– Correct only if threads do not communicate through resource

• In other words, multiple copies are a correct approach

• Example: Random objects

– Note:

 Because each call-stack is thread-local,

 never need to synchronize on local variables

In typical concurrent programs, the vast majority of objects

should be thread-local: shared-memory usage should be minimized

Immutable

Whenever possible, do not update objects

– Make new objects instead

One of the key tenets of functional programming (see CSE 341)

– Generally helpful to avoid side-effects

– Much more helpful in a concurrent setting

If a location is only read, never written, no synchronization needed

– Simultaneous reads are not races and not a problem

In practice, programmers usually over-use mutation – minimize it

Everything Else: Keep it Synchronized

After minimizing the amount of memory that is both

(1) thread-shared and (2) mutable, we need guidelines

for how to use locks to keep that data consistent

Guideline #0: No data races

• Never allow two threads to read/write or write/write

the same location at the same time

Necessary:

 In Java or C, a program with a data race is almost always wrong

But Not Sufficient:

 Our peek example had no data races

Consistent Locking

Guideline #1: Consistent Locking

For each location that requires synchronization,

have a lock that is always held when reading or writing the location

• We say the lock guards the location

• The same lock can guard multiple locations (and often should)

• Clearly document the guard for each location

• In Java, the guard is often the object containing the location

– this inside object methods

– But also common to guard a larger structure

with one lock to ensure mutual exclusion on the structure

Consistent Locking

• The mapping from locations to guarding locks is conceptual,

and must be enforced by you as the programmer

• It partitions the shared-&-mutable locations into “which lock”

Consistent locking is:

Not Sufficient:

It prevents all data races, but still allows bad interleavings

– Our peek example used consistent locking, but had

exposed intermediate states and bad interleavings

Not Necessary:

Can dynamically change the locking protocol

Beyond Consistent Locking

• Consistent locking is an excellent guideline

– A “default assumption” about program design

– You will save yourself many a headache using this guideline

• But it is not required for correctness:

Different program phases can use different locking techniques

– Provided all threads coordinate moving to the next phase

• Example from Project 3 Version 5:

– A shared grid being updated, so use a lock for each entry

– But after the grid is filled out, all threads except 1 terminate

• So synchronization no longer necessary (i.e., thread local)

– And later the grid is only read in response to queries

• Makes synchronization doubly unnecessary (i.e., immutable)

Lock Granularity

Coarse-Grained: Fewer locks (i.e., more objects per lock)

– Example: One lock for entire data structure (e.g., array)

– Example: One lock for all bank accounts

Fine-Grained: More locks (i.e., fewer objects per lock)

– Example: One lock per data element (e.g., array index)

– Example: One lock per bank account

“Coarse-grained vs. fine-grained” is really a continuum

…

…

Trade-Offs

Coarse-grained advantages

– Simpler to implement

– Faster/easier to implement operations that access multiple

locations (because all guarded by the same lock)

– Much easier to implement modifications of data-structure shape

Fine-grained advantages

– More simultaneous access (improves performance

when coarse-grained would lead to unnecessary blocking)

Guideline #2: Lock Granularity

Start with coarse-grained (simpler), move to fine-grained (performance)

only if contention on coarse locks is an issue. Alas, often leads to bugs.

Example: Separate Chaining Hashtable

• Coarse-grained: One lock for entire hashtable

• Fine-grained: One lock for each bucket

Which supports more concurrency for insert and lookup?

 Fine-grained; allows simultaneous access to diff. buckets

Which makes implementing resize easier?

 Coarse-grained; just grab one lock and proceed

– How would you do it?

Maintaining a numElements field will destroy

the potential benefits of using separate locks for each bucket, why?

 Updating it each insert w/o a coarse lock would be a data race

Critical-Section Granularity

A second, orthogonal granularity issue is critical-section size

– How much work to do while holding lock(s)

If critical sections run for too long:

– Performance loss because other threads are blocked

If critical sections are too short:

– Bugs because you broke up something where

other threads should not be able to see intermediate state

Guideline #3: Granularity

Do not do expensive computations or I/O in critical sections,

but also do not introduce race conditions

Example: Critical-Section Granularity

Suppose we want to change the value for a key in a hashtable

without removing it from the table

– Assume lock guards the whole table

synchronized(lock) {

 v1 = table.lookup(k);

 v2 = expensive(v1);

 table.remove(k);

 table.insert(k,v2);

}

Papa Bear’s

critical section

was too long

(table locked

during

expensive call)

Example: Critical-Section Granularity

Suppose we want to change the value for a key in a hashtable

without removing it from the table

– Assume lock guards the whole table

synchronized(lock) {

 v1 = table.lookup(k);

}

v2 = expensive(v1);

synchronized(lock) {

 table.remove(k);

 table.insert(k,v2);

}

Mama Bear’s

critical section

was too short

(if another thread

updated the entry,

we will lose an

update)

Example: Critical-Section Granularity

Suppose we want to change the value for a key in a hashtable

without removing it from the table

– Assume lock guards the whole table

done = false;

while(!done) {

 synchronized(lock) {

 v1 = table.lookup(k);

 }

 v2 = expensive(v1);

 synchronized(lock) {

 if(table.lookup(k)==v1) {

 done = true;

 table.remove(k);

 table.insert(k,v2);

}}}

Baby Bear’s

critical section

was just right

(if another update

occurred, try our

update again)

Atomicity

An operation is atomic if no other thread can see it partly executed

– Atomic as in “appears indivisible”

– Typically want ADT operations atomic,

even to other threads running operations on the same ADT

Guideline #4: Atomicity

– Think in terms of what operations need to be atomic

– Make critical sections just long enough to preserve atomicity

– Then design locking protocol to implement the critical sections

In other words:

 Think about atomicity first and locks second

Do Not Roll Your Own

• It is rare that you should write your own data structure

– Excellent implementations provided in standard libraries

– Point of CSE 332 is to understand the key trade-offs,

abstractions, and analysis of such implementations

• Especially true for concurrent data structures

– Far too difficult to provide fine-grained

synchronization without race conditions

– Standard thread-safe libraries like
ConcurrentHashMap written by world experts

Guideline #5: Libraries

Use built-in libraries whenever they meet your needs

Motivating Memory-Model Issues

Tricky and surprisingly wrong unsynchronized concurrent code

class C {

 private int x = 0;

 private int y = 0;

 void f() {

 x = 1;

 y = 1;

 }

 void g() {

 int a = y;

 int b = x;

 assert(b >= a);

 }

}

First understand why it looks like

the assertion cannot fail:

• Easy case: call to g ends before

any call to f starts

• Easy case: at least one call to f

completes before call to g starts

• If calls to f and g interleave…

Interleavings are Not Enough

There is no interleaving of f and g where the assertion fails

– Proof #1: Exhaustively consider all possible orderings of

access to shared memory (there are 6)

– Proof #2:
If !(b>=a), then a==1 and b==0.

But if a==1, then y=1 happened before a=y.

Because programs execute in order:
 a=y happened before b=x and x=1 happened before y=1.

So by transitivity, b==1. Contradiction.

x = 1;

y = 1;

int a = y;

int b = x;

assert(b >= a);

Thread 1: f Thread 2: g

Wrong

However, the code has a data race

– Unsynchronized read/write or write/write of same location

If code has data races, you cannot reason about it with interleavings

– This is simply the rules of Java (and C, C++, C#, other languages)

– Otherwise we would slow down all programs just to “help” those

with data races, and that would not be a good engineering trade-off

– So the assertion can fail

Why

For performance reasons, the compiler and the hardware

will often reorder memory operations

– Take a compiler or computer architecture course to learn more

x = 1;

y = 1;

int a = y;

int b = x;

assert(b >= a);

Thread 1: f Thread 2: g

Of course, we cannot just let them reorder anything they want

• Each thread computes things by executing code in order

• Consider: x=17; y=x;

The Grand Compromise

The compiler/hardware will never perform a memory reordering that

affects the result of a single-threaded program

The compiler/hardware will never perform a memory reordering that

affects the result of a data-race-free multi-threaded program

So: If no interleaving of your program has a data race,

 then you can forget about all this reordering nonsense:

 the result will be equivalent to some interleaving

Your job: Avoid data races

Compiler/hardware job: Give illusion of interleaving if you do your job

Fixing Our Example

• Naturally, we can use synchronization to avoid data races

– Then, indeed, the assertion cannot fail

class C {

 private int x = 0;

 private int y = 0;

 void f() {

 synchronized(this) { x = 1; }

 synchronized(this) { y = 1; }

 }

 void g() {

 int a, b;

 synchronized(this) { a = y; }

 synchronized(this) { b = x; }

 assert(b >= a);

 }

}

A Second Fix: Stay Away from This

• Java has volatile fields: accesses do not count as data races

– But you cannot read-update-write

• Implementation: slower than regular fields, faster than locks

• Really for experts: avoid them; use standard libraries instead

• And why do you need code like this anyway?

class C {

 private volatile int x = 0;

 private volatile int y = 0;

 void f() {

 x = 1;

 y = 1;

 }

 void g() {

 int a = y;

 int b = x;

 assert(b >= a);

 }

}

Code That is Wrong

• Here is a more realistic example of code that is wrong

– No guarantee Thread 2 will ever stop (as there is a data race)

– But honestly it will “likely work in practice”

class C {

 boolean stop = false;

 void f() {

 while(!stop) {

 // draw a monster

 }

 }

 void g() {

 stop = didUserQuit();

 }

}

Thread 1: f()

Thread 2: g()

Motivating Deadlock Issues

Consider a method to transfer money between bank accounts

class BankAccount {

 …

 synchronized void withdraw(int amt) {…}

 synchronized void deposit(int amt) {…}

 synchronized void transferTo(int amt,

 BankAccount a) {

 this.withdraw(amt);

 a.deposit(amt);

 }

}

Notice during call to a.deposit, thread holds two locks

– Need to investigate when this may be a problem

The Deadlock

acquire lock for x

do withdraw from x

block on lock for y

acquire lock for y

do withdraw from y

block on lock for x

Thread 1: x.transferTo(1,y)

T
im

e

Suppose x and y are fields holding accounts

Thread 2: y.transferTo(1,x)

The Dining Philosophers

• 5 philosophers go out to dinner together at an Italian restaurant

• Sit at a round table; one fork per setting

• When the spaghetti comes, each philosopher proceeds to grab their

right fork, then their left fork, then eats

• ‘Locking’ for each fork results in a deadlock

Deadlock

A deadlock occurs when there are threads T1, …, Tn such that:

• For i=1,..,n-1, Ti is waiting for a resource held by T(i+1)

• Tn is waiting for a resource held by T1

In other words, there is a cycle of waiting

– Can formalize as a graph of dependencies with cycles bad

Deadlock avoidance in programming amounts to

techniques to ensure a cycle can never arise

Back to Our Example

Options for deadlock-proof transfer:

1. Make a smaller critical section: transferTo not synchronized

– Exposes intermediate state after withdraw before deposit

– May be okay, but exposes wrong total amount in bank

2. Coarsen lock granularity:

one lock for all accounts allowing transfers between them

– Works, but sacrifices concurrent deposits/withdrawals

3. Give every bank-account a unique number

and always acquire locks in the same order

– Entire program should obey this order to avoid cycles

– Code acquiring only one lock can ignore the order

Ordering Locks
class BankAccount {

 …

 private int acctNumber; // must be unique

 void transferTo(int amt, BankAccount a) {

 if(this.acctNumber < a.acctNumber)

 synchronized(this) {

 synchronized(a) {

 this.withdraw(amt);

 a.deposit(amt);

 }}

 else

 synchronized(a) {

 synchronized(this) {

 this.withdraw(amt);

 a.deposit(amt);

 }}

 }

}

StringBuffer Example

From the Java standard library

class StringBuffer {

 private int count;

 private char[] value;

 …

 synchronized append(StringBuffer sb) {

 int len = sb.length();

 if(this.count + len > this.value.length)

 this.expand(…);

 sb.getChars(0,len,this.value,this.count);

 …
}

 synchronized getChars(int x, int, y,

 char[] a, int z) {

 “copy this.value[x..y] into a starting at z”

 }

}

Two Problems

Problem #1:
Lock for sb not held between calls to sb.length and sb.getChars

– So sb could get longer

– Would cause append to throw an ArrayBoundsException

Problem #2:
Deadlock potential if two threads try to append in opposite directions,

identical to the bank-account first example

Not easy to fix both problems without extra copying:

– Do not want unique ids on every StringBuffer

– Do not want one lock for all StringBuffer objects

Actual Java library: fixed neither (left code as is; changed documentation)

– Up to clients to avoid such situations with own protocols

Perspective

• Code like account-transfer and string-buffer append

are difficult to deal with for deadlock

• Easier case: different types of objects

– Can document a fixed order among types

– Example: “When moving an item from the hashtable to the work

 queue, never try to acquire the queue lock while

 holding the hashtable lock”

• Easier case: objects are in an acyclic structure

– Can use the data structure to determine a fixed order

– Example: “If holding a tree node’s lock, do not acquire other

 tree nodes’ locks unless they are children in the tree”

