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The Dictionary (a.k.a. Map) ADT 

• Data: 

– Set of (key, value) pairs 

– keys must be comparable 

 

• Operations: 

– insert(key,value) 

– find(key) 

– delete(key) 

– … 

• jfogarty 

James 

 Fogarty 

 … 

 

• trobison 

Tyler 

Robison 

 … 

 

• hchwei90 

Haochen 

 Wei 

 … 

 

• jabrah 

Jenny 

Abrahamson 

 … 

 

insert(jfogarty, ….) 

find(trobison) 

Tyler, Robison, … 

We will tend to emphasize the keys, 

don’t forget about the stored values 



Comparison: The Set ADT 

The Set ADT is like a Dictionary without any values 

– A key is present or not (i.e., there are no repeats) 

 

For find, insert, delete, there is little difference 

– In dictionary, values are “just along for the ride” 

– So same data structure ideas work for dictionaries and sets 

 

But if your Set ADT has other important operations this may not hold 

– union, intersection, is_subset 

– Notice these are binary operators on sets 

– There are other approaches to these kinds of operations 

 



Dictionary Data Structures 

We will see three different data structures implementing dictionaries 

 

1. AVL trees 

– Binary search trees with guaranteed balancing 
 

2. B-Trees 

– Also always balanced, but different and shallower 
 

3. Hashtables 

– Not tree-like at all 
 

 

Skipping: Other balanced trees (e.g., red-black, splay) 
 



A Typical Hierarchy A plausible configuration … 

       CPU 

Disk: 1TB = 240 

Main memory: 2GB = 231 

L2 Cache: 2MB = 221 

L1 Cache: 128KB = 217 

instructions (e.g., addition): 230/sec 
 

get data in L1: 229/sec = 2 insns 

 

 get data in L2: 225/sec = 30 insns  

 

      get data in main memory: 

          222/sec = 250 insns  

 

       get data from  

        “new place” on disk: 

         27/sec =8,000,000 insns 

 

         “streamed”: 218/sec 



Morals 

It is much faster to do:   Than: 

  5 million arithmetic ops  1 disk access 

  2500 L2 cache accesses 1 disk access 

  400 main memory accesses 1 disk access 
 

Why are computers built this way? 

– Physical realities (speed of light, closeness to CPU) 

– Cost (price per byte of different technologies) 

– Disks get much bigger not much faster 

• Spinning at 7200 RPM accounts for much of  

the slowness and unlikely to spin faster in the future 

– Speedup at higher levels makes lower levels relatively slower 



Block and Line Size 

• Moving data up the memory hierarchy is slow because of latency 

– Might as well send more, just in case 

– Send nearby memory because: 

• It is easy, we are here anyways 

• And likely to be asked for soon (locality of reference) 

 

• Amount moved from disk to memory is called “block” or “page” size 

– Not under program control 

 

• Amount moved from memory to cache is called the “line” size 

– Not under program control 



M-ary Search Tree 

 

Perfect tree of height h has (Mh+1-1)/(M-1) nodes (textbook, page 4) 
 

# hops for find: If balanced, using logM n instead of log2 n 

– If M=256, that’s an 8x improvement 

– If n = 240 that’s 5 levels instead of 40 (i.e., 5 disk accesses) 

 

Runtime of find if balanced: O(log2 M logM n) 

• Build some sort of search tree with branching factor M: 

– Have an array of sorted children (Node[]) 

– Choose M to fit snugly into a disk block (1 access for array) 

 

(binary search children) (walk down the tree) 



Problems with M-ary Search Trees 

 

• What should the order property be? 

 

• How would you rebalance (ideally without more disk accesses)? 

 

• Any “useful” data at the internal nodes takes up  

disk-block space without being used by finds moving past it 

 

Use the branching-factor idea, but for a different kind of balanced tree 

– Not a binary search tree 

– But still logarithmic height for any M > 2 

 



B+ Trees   (we will just say “B Trees”) 

• Two types of nodes: 

– internal nodes and leaf nodes 

 

• Each internal node has room for  

up to M-1 keys and M children 

– no data; all data at the leaves! 

 

• Order property: 

– Subtree between x and y  

• Data that is  x and < y  

– Notice the  

 

• Leaf has up to L sorted data items 

 

3 7  12  21     

 

 

              

21x 12x<21 7x<12 3x<7 x<3 

As usual, we will ignore  

the presence of data in  

our examples 

 

Remember it is actually  

not there for internal nodes 



Find 

 

• We are accustomed to data at internal nodes 

 

• But find is still an easy root-to-leaf recursive algorithm 

– At each internal node do binary search on the  M-1 keys 

– At the leaf do binary search on the  L data items 

 

• To get logarithmic running time, we need a balance condition 

3 7  12  21     

 

 

              

21x 12x<21 7x<12 3x<7 x<3 



Structure Properties 

• Root (special case) 

– If tree has  L items, root is a leaf  

(occurs when starting up, otherwise very unusual) 

– Else has between 2 and M children 

 

• Internal Nodes 

– Have between M/2 and M children  (i.e., at least half full) 

 

• Leaf Nodes 

– All leaves at the same depth 

– Have between L/2 and L data items (i.e., at least half full) 

 

(Any M > 2 and L will work; picked based on disk-block size) 



Example 
Suppose M=4 (max # children / pointers in internal node) 

    and L=5 (max # data items at leaf) 

– All internal nodes have at least 2 children 

– All leaves at same depth, have at least 3 data items 

6 

8 

9 

10 

12 

14 

16 

17  

20 

22 

  

27 

28 

32 

  

34 

38 

39 

41 

44 

47 

49  

  

50 

60 

70 

  

12 44   

6     20 27 34  50     

        

                        

19              

24 

1 

2 

4 

  

Note on notation: Inner nodes drawn horizontally, 

leaves vertically to distinguish.  Including empty cells 



Balanced enough 

Not hard to show height h is logarithmic in number of data items n 

 

• Let M > 2 (if M = 2, then a list tree is legal, which is no good) 

 

• Because all nodes are at least half full (except root may have 

only 2 children) and all leaves are at the same level, the 

minimum number of data items n for a height h>0 tree is… 

   

                 n     2  M/2 h-1  L/2 

 

 
minimum number 

 of leaves 

minimum data  

per leaf 

Exponential in height  

because M/2 > 1 



Disk Friendliness 

What makes B trees so disk friendly? 

 

• Many keys stored in one internal node 

– All brought into memory in one disk access 

– But only if we pick M wisely 

– Makes the binary search over M-1 keys totally worth it 

(insignificant compared to disk access times) 

 

• Internal nodes contain only keys 

– Any find wants only one data item;  

wasteful to load unnecessary items with internal nodes 

– Only bring one leaf of data items into memory 

– Data-item size does not affect what M is 



Maintaining Balance 

• So this seems like a great data structure, and it is 

 

• But we haven’t implemented the other dictionary operations yet 

– insert 

– delete 

 

• As with AVL trees, the hard part is maintaining structure properties 



Building a B-Tree 

The empty B-Tree 

(the root will be a 

leaf at the beginning) 

M = 3 L = 3 

Insert(3) Insert(18)   

  

  

Insert(14) 
  

  

  

  

  

  3 3 

18 

3 

14 

18 

Simply need to  

keep data sorted 



Insert(30) 
3 

14 

18 

3 

14 

18 

M = 3 L = 3 

30 

3 

14 

18 

30 

18 

•When we ‘overflow’ a leaf, we split it into 2 leaves 

•Parent gains another child 

•If there is no parent, we create one 

 

•How do we pick the new key? 

•Smallest element in right tree 

??? 



Insert(32) 
3 

14 

18 

30 

18 

3 

14 

18 

30 

18 

3 

14 

18 

30 

18 

Insert(36) 

3 

14 

18 

30 

18 

Insert(15) 

M = 3 L = 3 

32 

32 

36 

32 

32 

36 

32 

15 

Split leaf again 



Insert(16) 

3 

14 

15 

18 

30 

18 32 

32 

36 

3 

14 

15 

18 

30 

18 32 

32 

36 

18 

30 

18 32 

32 

36 

M = 3 L = 3 

16 

3 

14 

15 

16 

15 

15 32 

18 

Split the internal node 

(in this case, the root) 

??? 



Insert(12,40,45,38) 

3 

14 

15 

16 

15 

18 

30 

32 

32 

36 

18 

3 

12 

14 

15 

16 

15 

18 

30 

32 40 

32 

36 

38 

18 

40 

45 

M = 3 L = 3 

Note: Given the leaves and the structure of the 

tree, we can always fill in internal node keys; 

‘the smallest value in my right branch’ 



Insertion Algorithm 

1. Insert the data in its leaf in sorted order 

 

2. If the leaf now has L+1 items, overflow! 

– Split the leaf into two nodes: 

• Original leaf with (L+1)/2  smaller items 

• New leaf with (L+1)/2 = L/2 larger items 

– Attach the new child to the parent 

• Adding new key to parent in sorted order 

 

3. If Step 2 caused the parent to have M+1 children, overflow! 



Insertion Algorithm 

3. If an internal node has M+1 children 

– Split the node into two nodes 

• Original node with (M+1)/2  smaller items 

• New node with (M+1)/2 = M/2 larger items 

– Attach the new child to the parent 

• Adding new key to parent in sorted order 

 

Step 3 splitting could make the parent overflow too 

– So repeat step 3 up the tree until a node does not overflow 

– If the root overflows, make a new root with two children 

• This is the only case that increases the tree height 

 



Worst-Case Efficiency of Insert 

• Find correct leaf: 

• Insert in leaf: 

• Split leaf: 

• Split parents all the way up to root: 

 

Total: 

 

But it’s not that bad: 

– Splits are not that common (only required when a node is FULL, 

M and L are likely to be large, and after a split will be half empty) 

– Splitting the root is extremely rare 

– Remember disk accesses is name of the game: O(logM n) 

 

O(log2 M logM n) 

O(L) 

O(L) 

O(M logM n) 

 

O(L + M logM n) 



Delete(32) 

3 

12 

14 

15 

16 

15 

18 

30 

32 40 

32 

36 

38 

18 

40 

45 

3 

12 

14 

15 

16 

15 

18 

30 

40 

18 

40 

45 

Deletion 

M = 3 L = 3 

36 

38 

Let them eat cake! 



Delete(15) 

3 

12 

14 

15 

16 

15 

18 

30 

36 40 

36 

38 

18 

40 

45 

3 

12 

14 

16 

16 

18 

30 

36 40 

36 

38 

18 

40 

45 

M = 3 L = 3 

Are we okay? 

Dang, not half full 

Are you using that 14? 

Can I borrow it? 



3 

12 

14 

16 

14 

18 

30 

36 40 

36 

38 

18 

40 

45 

M = 3 L = 3 

3 

12 

14 

16 

16 

18 

30 

36 40 

36 

38 

18 

40 

45 



Delete(16) 

3 

12 

14 

16 

14 

18 

30 

36 40 

36 

38 

18 

40 

45 

14 

18 

30 

36 40 

36 

38 

18 

40 

45 

M = 3 L = 3 

3 

12 

14 

Are you using that 12? Are you using that 18? 



3 

12 

14 

18 

30 

36 40 

36 

38 

18 

40 

45 

M = 3 L = 3 

14 

18 

30 

36 40 

36 

38 

18 

40 

45 

3 

12 

14 

Are you using that 18/30? 



3 

12 

14 

18 

30 

36 40 

36 

38 

18 

40 

45 

M = 3 L = 3 

3 

12 

14 

18 

18 

30 

40 

36 

38 

36 

40 

45 



Delete(14) 

3 

12 

14 

18 

18 

30 

40 

36 

38 

36 

40 

45 

3 

12 

18 

18 

30 

40 

36 

38 

36 

40 

45 

M = 3 L = 3 



Delete(18) 

3 

12 

18 

18 

30 

40 

36 

38 

36 

40 

45 

M = 3 L = 3 

3 

12 

18 

30 

40 

36 

38 

36 

40 

45 



3 

12 

30 

40 

36 

38 

36 

40 

45 

M = 3 L = 3 

3 

12 

18 

30 

40 

36 

38 

36 

40 

45 



3 

12 

30 

40 

36 

38 

36 

40 

45 

36 40 

3 

12 

30 

3 

36 

38 

40 

45 

M = 3 L = 3 



36 40 

3 

12 

30 

36 

38 

40 

45 

M = 3 L = 3 

36 40 

3 

12 

30 

3 

36 

38 

40 

45 



Deletion Algorithm 

1. Remove the data from its leaf 

 

2. If the leaf now has L/2 - 1, underflow! 

– If a neighbor has >  L/2 items, adopt and update parent 

– Else merge node with neighbor 

• Guaranteed to have a legal number of items 

• Parent now has one less node 

 

3. If Step 2 caused parent to have M/2 - 1 children, underflow! 

 



Deletion Algorithm 

3. If an internal node has M/2 - 1 children 

– If a neighbor has >  M/2 items, adopt and update parent 

– Else merge node with neighbor 

• Guaranteed to have a legal number of items 

• Parent now has one less node, may need to continue 

underflowing up the tree 

 

Fine if we merge all the way up through the root 

– Unless the root went from 2 children to 1 

– In that case, delete the root and make child the root 

– This is the only case that decreases tree height 

 



Worst-Case Efficiency of Delete 

• Find correct leaf: 

• Remove from leaf: 

• Adopt from or merge with neighbor: 

• Adopt or merge all the way up to root: 

 

Total: 

 

But it’s not that bad: 

– Merges are not that common 

– Remember disk access is the name of the game: O(logM n) 

O(log2 M logM n) 

O(L) 

O(L) 

O(M logM n) 

 

O(L + M logM n) 

 



Adoption for Insert 

 

But can sometimes avoid splitting via adoption 

– Change what leaf is correct by changing parent keys 

– This is simply “borrowing” but “in reverse” 

– Not necessary 
 

Example: 

3 

14 

18 

30 

18 

3 

14 

30 

31 

30 

Insert(31) 

32 

Adoption 

18 32 



 B Trees in Java? 

Remember you are learning deep concepts, not just trade skills 

 

For most of our data structures, we have encouraged  

writing high-level and reusable code, as in Java with generics 

 

It is worthwhile to know enough about “how Java works”  

and why this is probably a bad idea for B trees 

– If you just want balance with worst-case logarithmic operations 

• No problem, M=3 is a 2-3 tree, M=4, is a 2-3-4 tree 

– Assuming our goal is efficient number of disk accesses 

• Java has many advantages, but it wasn’t designed for this 

 

The key issue is extra levels of indirection… 

 



Naïve Approach 

Even if we assume data items have int keys, you cannot get the 

data representation you want for “really big data”  

interface Keyed<E> { 
  int key(E); 
} 
class BTreeNode<E implements Keyed<E>> { 
  static final int M = 128; 
  int[] keys = new int[M-1]; 
  BTreeNode<E>[] children = new BTreeNode[M]; 
  int numChildren = 0; 
  … 
} 
class BTreeLeaf<E> { 
  static final int L = 32; 
  E[] data = (E[])new Object[L]; 
  int numItems = 0; 
  … 
} 
 



What that looks like 

BTreeNode (3 objects with “header words”) 

M-1 12 20 45 

M 

70 

BTreeLeaf (data objects not in contiguous memory) 

20 

… (larger array) 

… (larger array) 

L … (larger array) 



The moral 

• The point of B trees is to keep related data in contiguous memory 
 

• All the red references on the previous slide are inappropriate 

– As minor point, beware the extra “header words” 
 

• But that is “the best you can do” in Java 

– Again, the advantage is generic, reusable code 

– But for your performance-critical web-index,  

not the way to implement your B-Tree for terabytes of data 
 

• Other languages better support “flattening objects into arrays” 
 

• Levels of indirection matter! 



Conclusion: Balanced Trees 

• Balanced trees make good dictionaries because they guarantee 
logarithmic-time find, insert, and delete 

– Essential and beautiful computer science 

– But only if you can maintain balance within the time bound 
 

• AVL trees maintain balance by tracking height and allowing all 

children to differ in height by at most 1 
 

• B trees maintain balance by keeping nodes at least half full and 

all leaves at same height 
 

• Other great balanced trees (see text; worth knowing they exist) 

– Red-black trees: all leaves have depth within a factor of 2 

– Splay trees: self-adjusting; amortized guarantee;  

       no extra space for height information 

 

 


