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Overview 

• Asymptotic analysis 

– Why we care 

– Big Oh notation 

– Examples 

– Caveats & miscellany 

– Evaluating an algorithm 

– Big Oh’s family 

– Recurrence relations for analysis 
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What do we want to analyze? 

• Correctness 
• Performance: Algorithm’s speed or memory 

usage: our focus 
– Change in speed as the input grows 

• n increases by 1 
• n doubles 

– Comparison between 2 algorithms 

• Security 
• Reliability 
• Sometimes other properties (‘stable’ sorts) 
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Gauging performance 

• Uh, why not just run the program and time it? 
– Too much variability; not reliable: 

• Hardware: processor(s), memory, etc. 

• OS, version of Java, libraries, drivers 

• Choice of input 

• Programs running in the background, OS stuff, etc.: several 
executions on the same computer with the same settings may well 
yield different results 

• Implementation dependent 

– Timing doesn’t really evaluate the algorithm; it evaluates 
its implementation in one very specific scenario 

– As computer scientists, we are more interested in the 
algorithm itself 
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Gauging performance (cont.) 

• At the core of CS is a backbone of theory & mathematics 
– Examine the algorithm itself, mathematically, not the 

implementation 
– Reason about performance as a function of n; not just ‘it runs 

fast on this particular test file’ 
– Be able to mathematically prove things about performance 

• Yet, timing has its place 
– In the real world, we do want to know whether implementation 

A runs faster than implementation B on data set C 
– Ex: Benchmarking graphics cards 
– May do some timing in projects 

• Evaluating an algorithm?  Use asymptotic analysis 
• Evaluating an implementation of hardware/software?  

Timing can be useful 
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Big-Oh 
• Say we’re given 2 run-time functions f(n) & g(n) for input n 
• The Definition: f(n) is in O(g(n) ) iff there exist positive constants c and n0 

such that 
  f(n)    c g(n), for all n  n0. 

 
• The Idea: Can we find an n0  such that g is  
 always greater than f from there on out? 
 
 c: We are allowed to multiply g by a constant  
 value (say, 10) to make g larger (more on why  
 this is here in a moment) 
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 O(g(n)) is really a set of functions whose asymptotic behavior is less 
than or equal that of g(n) 

 

 Think of ‘f(n) is in O(g(n))’ as f(n) ≤ g(n) (sort of) 

  

n n0 

g 

f 



Big Oh (cont.) 

• The Intuition: 
– Take functions f(n) & g(n), consider only the most significant 

term and remove constant multipliers: 
• 5n+3 → n 
• 7n+.5n2+2000 → n2 

• 300n+12+nlogn → nlogn 
• – n →  ??? What does it mean to have a negative run-time? 

– Then compare the functions; if f(n) ≤ g(n), then  
  f(n) is in O(g(n)) 
– Do NOT ignore constants that are not additions or multipliers: 

• n3 is O(n2) : FALSE 
• 3n is O(2n) : FALSE 

– When in doubt, refer to the definition (examples in a moment) 
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Examples 
• True or false? 

1. 4+3n is O(n) 

2. n+2logn is 
O(logn) 

3. logn+2 is O(1) 

4. n50 is O(1.01n) 

5. There exists 
α>1.0 s.t.  

  αn is O(nβ) 

For some finite β 
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False 
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Examples (cont.) 

• For f(n)=4n & g(n)=n2, prove f(n) is in O(g(n)) 

– A valid proof (for our purposes) is to find valid c & n0  

– When n=4, f=16 & g=16; this is the crossing over 
point 

– Say n0 = 4, and c=1 

– How many possible answers (c,n0) are there? 

• *Infinitely many:  

ex: n0 = 78, and c=42 
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The Definition: f(n) is in O(g(n) ) 

iff there exist positive constants c 

and n0 such that 

 f(n)    c g(n) for all n  n0. 



Examples (cont.) 

• For f(n)=n3 & g(n)=2n, prove f(n) is in O(g(n)) 

– Possible answer: n0=11, c=1 
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The Definition: f(n) is in O(g(n) ) 

iff there exist positive constants c 

and n0 such that 

 f(n)    c g(n) for all n  n0. 



What’s with the c? 

• To capture this notion of similar asymptotic behavior, 
we allow a constant multiplier (called c) 

• Consider: 
 f(n)=7n+5 

 g(n)=n 

• These have the same asymptotic behavior (linear), so 
f(n) is in O(g(n)) even though f is always larger 

• There is no n0 such that f(n)≤g(n) for all n≥n0 

• The ‘c’ in the definition allows for that; it allows us to 
‘throw out constant factors’ 

• To prove f(n) is in O(g(n)), have c=12, n0=1 
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Big Oh: Common Categories 
From fastest to slowest 
O(1)  constant (same as O(k) for constant k) 
O(log n) logarithmic 
O(n)  linear 
O(n log n)         “n log n” 
O(n2)  quadratic 
O(n3)  cubic 
O(nk)  polynomial (where is k is an constant) 
O(kn)  exponential (where k is any constant > 1) 
 

Usage note: “exponential” does not mean “grows really fast”, it means 
“grows at rate proportional to kn for some k>1” 
– A savings account accrues interest exponentially (k=1.01?) 

 
Where does log2n fit in? 
Where does loglogn fit in? 
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Caveats 

• Asymptotic complexity focuses on behavior of 
the algorithm for large n and is independent 
of any computer/coding trick, but results can 
be misleading 

– Example: n1/10 vs. log n 

• Asymptotically n1/10 grows more quickly 

• But the “cross-over” point is around 5 * 1017 

• So if you have input size less than 258, prefer n1/10 
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More Caveats 

• Even for more common functions, comparing O() 
for small n values can be misleading 
– Quicksort: O(nlogn) (expected) 
– Insertion Sort: O(n2)(expected) 
– Yet in reality Insertion Sort is faster for small n’s 
– We’ll learn about these sorts later 

• Usually talk about an algorithm being O(n) or 
whatever 
– But you can also prove bounds for entire problems 
– Ex: Sorting cannot take place faster than O(nlogn) in 

the worst case (assuming it’s sequential and 
comparison-based; more on these later) 
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Miscellaneous 

• Not uncommon to evaluate for: 

– Best-case 

– Worst-case 

– ‘Expected case’ 

• What are the run-times for BST lookup? 

– Best 

– Worst 

– ‘Expected’ 
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O(1) – find at root 

O(n) – tree is 1 long branch 

O(logn) – complicated; see book 



Notational Notes 

• We say (3n2+17)  is in O(n2)  

– Confusingly, we also say/write: 

• (3n2+17)  is O(n2)  

• (3n2+17)  =  O(n2) (very common; in the book) 
– But it’s not ‘=‘ as in ‘equality’: 

– We would never say O(n2) =  (3n2+17) 

• Perhaps the most accurate notation is 

  f(n)ϵ O(g(n)) 

– Because O(g(n)) is a set of functions 
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Analyzing code (worst case) 
Basic operations  take “some amount of” constant time: 

– Arithmetic (fixed-width) 
– Assignment to a variable 
– Access one Java field or array index 
– Etc. 

(This is an approximation of reality: a useful “lie”.) 
 
Consecutive statements  Sum of times 
Conditionals         Time of test plus slower branch 
Loops    Sum of iterations 
Calls    Time of call’s body 
Recursion   Solve recurrence equation 
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Analyzing code 

What are the run-times for the following code: 

1. for(int i=0;i<n;i++) O(1) 

2. for(int i=0;i<=n+100;i+=14) O(1) 

3. for(int i=0;i<n;i++) for(int j=0;j<i;j++) O(1) 

4. for(int i=0;i<n;i++) for(int j=0;j<n;j++) O(n) 

5. for(int i=1;i<n;i*=2) O(1) 

6. for(int i=0;i<n;i++) if(m(i)) O(n) else O(1) 
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O(n) 

O(n) 

O(n2) 

  O(n3) 

O(logn) 
Depends on 

m(); worst: 
O(n2) 



Big Oh’s Family 

• Big Oh: Upper bound: O( f(n) ) is the set of all functions 
asymptotically less than or equal to f(n): ‘’ of functions 
– g(n) is in O( f(n) ) if there exist  constants c and n0 such that  

  g(n)   c f(n) for all n  n0 
 

• Big Omega: Lower bound: ( f(n) ) is the set of all functions 
asymptotically greater than or equal to f(n): ‘’ of functions 
– g(n) is in ( f(n) ) if there exist  constants c and n0 such that  

  g(n)   c f(n) for all n  n0 
 

• Big Theta: Tight bound: ( f(n) ) is the set of all functions 
asymptotically equal to f(n): ‘=‘ of functions 
– Intersection of O( f(n) ) and ( f(n) )  (use different constants) 
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Regarding use of terms 

Common error is to say O(f(n)) when you mean (f(n)) 
– People often say O() to mean a tight bound 
– Say we have f(n)=n; we could say f(n) is in O(n), which is 

true, but only conveys the upper-bound 
– Somewhat incomplete; instead say it is (n) 
– This gives us a tighter bound 

 

Less common notation: 
– “little-oh”: like “big-Oh” but strictly less than 

• Example: n is o(n2) but not o(n) 

– “little-omega”: like “big-Omega” but strictly greater than 
• Example: n is (log n) but not (n) 
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Recurrence Relations 
• Computing run-times gets interesting with 

recursion 
• Say we want to perform some computation 

recursively on a list of size n 
– Conceptually, in each recursive call we: 

• Perform some amount of work, call it w(n) 
• Call the function recursively with a smaller portion of the list 

 
 So, if we do w(n) work per step, and reduce the n 

in the next recursive call by 1, we do total work: 
  T(n)=w(n)+T(n-1) 
 With some base case, like T(1)=5=O(1) 
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Recursive version of sum array 

Recurrence Relation: T(n) = O(1) + T(n-1) 
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int sum(int[] arr){ 
  return help(arr,0); 
} 
int help(int[]arr,int i) { 
  if(i==arr.length)  
    return 0; 
  return arr[i] + help(arr,i+1); 
} 

Recursive: 

– Recurrence is  

 k + k  + … + k   

 for n times 

 



Recurrence Relations (cont.) 

 Say we have the following recurrence relation: 
  T(n)=2+T(n-1) 
  T(1)=5 
Now we just need to solve it; that is, reduce it to a closed form 
 
Start by writing it out: 
 T(n)=2+T(n-1)=2+2+T(n-2)=2+2+2+T(n-3) 
  =2+2+2+…+2+T(1)=2+2+2+…+2+5 
  =2k+5, where k is the # of times we expanded T() 
 We expanded it out n-1 times, so 
  T(n)=2(n-1)+5=2n+3=O(n) 
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Example: Find k 

Find an integer in a sorted array 
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2 3 5 16 37 50 73 75 126 

// requires array is sorted      

// returns whether k is in array 

boolean find(int[]arr, int k){ 

   ??? 

} 



Linear search 

Find an integer in a sorted array 
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2 3 5 16 37 50 73 75 126 

// requires array is sorted      

// returns whether k is in array 

boolean find(int[]arr, int k){ 

   for(int i=0; i < arr.length; ++i) 

      if(arr[i] == k) 

        return true; 

   return false; 

} 

Best case: 6ish steps = O(1) 

Worst case: 6ish*(arr.length)   
        = O(arr.length) = O(n) 

      

 



Binary search 

Find an integer in a sorted array 

– Can also be done non-recursively (same run-time) 
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2 3 5 16 37 50 73 75 126 

// requires array is sorted      
// returns whether k is in array 
boolean find(int[]arr, int k){ 
   return help(arr,k,0,arr.length); 
} 
boolean help(int[]arr, int k, int lo, int hi) { 
   int mid = (hi+lo)/2; //i.e., lo+(hi-lo)/2 
   if(lo==hi)      return false; 
   if(arr[mid]==k) return true; 
   if(arr[mid]< k) return help(arr,k,mid+1,hi); 
   else            return help(arr,k,lo,mid); 
} 
    



Binary search 
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// requires array is sorted      
// returns whether k is in array 
boolean find(int[]arr, int k){ 
   return help(arr,k,0,arr.length); 
} 
boolean help(int[]arr, int k, int lo, int hi) { 
   int mid = (hi+lo)/2; 
   if(lo==hi)      return false; 
   if(arr[mid]==k) return true; 
   if(arr[mid]< k) return help(arr,k,mid+1,hi); 
   else            return help(arr,k,lo,mid); 
} 
    

Best case: 8ish steps = O(1) 

Worst case:   

 T(n) = 10ish + T(n/2) where n is hi-lo 



Solving Recurrence Relations 

1. Determine the recurrence relation.  What is the base case? 
– T(n) = 10 + T(n/2) T(1) = 8 

2. “Expand” the original relation to find an equivalent general 
expression in terms of the number of expansions. 

– T(n)  = 10 + 10 + T(n/4) 
          = 10 + 10 + 10 + T(n/8) 
                 = … 
                 = 10k + T(n/(2k)) where k is the # of expansions 

3. Find a closed-form expression by setting the number of 
expansions to a value which reduces the problem to a base case 

– n/(2k) = 1 means n = 2k  means k = log2 n 
– So T(n) = 10 log2 n + 8  (get to base case and do it) 
– So T(n) is O(log n) 
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Linear vs Binary Search 

• So binary search is O(log n) and linear is 
O(n)  

– Given the constants, linear search could still be 
faster for small values of n 

    Example w/ hypothetical constants: 

30 



What about a binary version of sum? 

Recurrence is T(n) = O(1) + 2T(n/2) = O(n) 
 (Proof left as an exercise) 
“Obvious”: have to read the whole array 
 You can’t do better than O(n)  
 Or can you…  
   We’ll see a parallel version of this much later 
   With ∞ processors, T(n) = O(1) + 1T(n/2) = O(logn) 
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int sum(int[] arr){ 
   return help(arr,0,arr.length); 
} 
int help(int[] arr, int lo, int hi) { 
   if(lo==hi)   return 0; 
   if(lo==hi-1) return arr[lo];    
   int mid = (hi+lo)/2; 
   return help(arr,lo,mid) + help(arr,mid,hi); 
} 
    



Another example 

• T(n)=n + 2T(n/2), T(1)=c 

– Any guesses as to what algorithm(s) this 
represents? 

• Mergesort & quicksort (assuming good pivot selection) 

– Any guesses as to what the closed form for this is? 

• O(nlogn) 
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Really common recurrences 

Should know how to solve recurrences but also recognize some 
really common ones: 
 

 T(n) = O(1) + T(n-1)  linear 
 T(n) = O(1) + 2T(n/2)   linear 
 T(n) = O(1) + T(n/2)   logarithmic 
 T(n) = O(1) + 2T(n-1)   exponential 
 T(n) = O(n) + T(n-1)   quadratic 
 T(n) = O(n) + T(n/2)   linear 
 T(n) = O(n) + 2T(n/2)   O(n log n) 
 
Note big-Oh can also use more than one variable (graphs: vertices & 

edges) 
• Example: you can (and will in proj3!) sum all elements of an n-by-m 

matrix in O(nm) 
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