



#### CSE332: Data Abstractions Lecture 3: Asymptotic Analysis

Tyler Robison (covering for James Forgarty) Winter 2012

## Overview

- Asymptotic analysis
  - Why we care
  - Big Oh notation
  - Examples
  - Caveats & miscellany
  - Evaluating an algorithm
  - Big Oh's family
  - Recurrence relations for analysis

## What do we want to analyze?

- Correctness
- Performance: Algorithm's speed or memory usage: our focus
  - Change in speed as the input grows
    - n increases by 1
    - n doubles
  - Comparison between 2 algorithms
- Security
- Reliability
- Sometimes other properties ('stable' sorts)

# Gauging performance

- Uh, why not just run the program and time it?
  - Too much variability; not reliable:
    - Hardware: processor(s), memory, etc.
    - OS, version of Java, libraries, drivers
    - Choice of input
    - Programs running in the background, OS stuff, etc.: several executions on the same computer with the same settings may well yield different results
    - Implementation dependent
  - Timing doesn't really evaluate the algorithm; it evaluates its implementation in one very specific scenario
  - As computer scientists, we are more interested in the algorithm itself

# Gauging performance (cont.)

- At the core of CS is a backbone of theory & mathematics
  - Examine the algorithm itself, mathematically, not the implementation
  - Reason about performance as a function of n; not just 'it runs fast on this particular test file'
  - Be able to mathematically prove things about performance
- Yet, timing has its place
  - In the real world, we do want to know whether implementation
     A runs faster than implementation B on data set C
  - Ex: Benchmarking graphics cards
  - May do some timing in projects
- Evaluating an algorithm? Use asymptotic analysis
- Evaluating an implementation of hardware/software? Timing can be useful

## Overview

- Asymptotic analysis
  - Why we care
  - Big Oh notation
  - Examples
  - Caveats & miscellany
  - Evaluating an algorithm
  - Big Oh's family
  - Recurrence relations for analysis

# Big-Oh

- Say we're given 2 run-time functions f(n) & g(n) for input n
- The Definition: f(n) is in O(g(n)) iff there exist positive constants c and n<sub>0</sub> such that

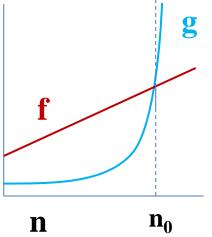
 $f(n) \leq c g(n)$ , for all  $n \geq n_{0.0}$ 

• The Idea: Can we find an n<sub>0</sub> such that g is always greater than f from there on out?

c: We are allowed to multiply g by a constant value (say, 10) to make g larger (more on why this is here in a moment)

O(g(n)) is really a set of functions whose asymptotic behavior is less than or equal that of g(n)

Think of 'f(n) is in O(g(n))' as  $f(n) \le g(n)$  (sort of)



# Big Oh (cont.)

- The Intuition:
  - Take functions f(n) & g(n), consider only the most significant term and remove constant multipliers:
    - $5n+3 \rightarrow n$
    - 7n+.5n<sup>2</sup>+2000  $\rightarrow$  n<sup>2</sup>
    - $300n+12+nlogn \rightarrow nlogn$
    - $-n \rightarrow ???$  What does it mean to have a negative run-time?
  - Then compare the functions; if  $f(n) \le g(n)$ , then f(n) is in O(g(n))
  - Do NOT ignore constants that are not additions or multipliers:
    - n<sup>3</sup> is O(n<sup>2</sup>) : FALSE
    - 3<sup>n</sup> is O(2<sup>n</sup>) : FALSE
  - When in doubt, refer to the definition (examples in a moment)

## Examples

True

- True or false?
- 1. 4+3n is O(n) True
- 2. n+2logn is False O(logn)
- 3. logn+2 is O(1) False
- 4. n<sup>50</sup> is O(1.01<sup>n</sup>)
- 5. There exists  $\alpha > 1.0 \text{ s.t.}$  $\alpha^n \text{ is } O(n^{\beta})$
- For some finite  $\beta$

False

## Examples (cont.)

- For f(n)=4n & g(n)=n<sup>2</sup>, prove f(n) is in O(g(n))
  - A valid proof (for our purposes) is to find valid c &  $n_0$
  - When n=4, f=16 & g=16; this is the crossing over point
  - Say  $n_0 = 4$ , and c=1
  - How many possible answers  $(c,n_0)$  are there?
    - \*Infinitely many:
      ex: n<sub>0</sub> = 78, and c=42

The Definition: f(n) is in O(g(n))iff there exist *positive* constants *c* and  $n_0$  such that  $f(n) \le c g(n)$  for all  $n \ge n_0$ 

## Examples (cont.)

For f(n)=n<sup>3</sup> & g(n)=2<sup>n</sup>, prove f(n) is in O(g(n))
 Possible answer: n<sub>0</sub>=11, c=1

The Definition: f(n) is in O(g(n))iff there exist *positive* constants *c* and  $n_0$  such that  $f(n) \le c g(n)$  for all  $n \ge n_0$ .

## What's with the c?

- To capture this notion of similar asymptotic behavior, we allow a constant multiplier (called c)
- Consider:

f(n)=7n+5 g(n)=n

- These have the same asymptotic behavior (linear), so f(n) is in O(g(n)) even though f is <u>always</u> larger
- There is no  $n_0$  such that  $f(n) \le g(n)$  for all  $n \ge n_0$
- The 'c' in the definition allows for that; it allows us to 'throw out constant factors'
- To prove f(n) is in O(g(n)), have c=12, n<sub>0</sub>=1

## **Big Oh: Common Categories**

| From fastest to slowest            |                                                                 |
|------------------------------------|-----------------------------------------------------------------|
| <i>O</i> (1)                       | constant (same as <i>O</i> ( <i>k</i> ) for constant <i>k</i> ) |
| $O(\log n)$                        | logarithmic                                                     |
| <i>O</i> ( <i>n</i> )              | linear                                                          |
| O(n <b>log</b> <i>n</i> )          | "n <b>log</b> <i>n</i> "                                        |
| <i>O</i> ( <i>n</i> <sup>2</sup> ) | quadratic                                                       |
| <i>O</i> ( <i>n</i> <sup>3</sup> ) | cubic                                                           |
| <i>O</i> ( <i>n</i> <sup>k</sup> ) | polynomial (where is <i>k</i> is an constant)                   |
| <i>O</i> ( <i>k</i> <sup>n</sup> ) | exponential (where k is any constant > 1)                       |

Usage note: "exponential" does not mean "grows really fast", it means "grows at rate proportional to  $k^n$  for some k>1"

A savings account accrues interest exponentially (k=1.01?)

Where does log<sup>2</sup>n fit in? Where does loglogn fit in?

#### Caveats

- Asymptotic complexity focuses on behavior of the algorithm for large *n* and is independent of any computer/coding trick, but results can be misleading
  - Example:  $n^{1/10}$  vs. log n
    - Asymptotically  $n^{1/10}$  grows more quickly
    - But the "cross-over" point is around 5 \*  $10^{17}$
    - So if you have input size less than  $2^{58}$ , prefer  $n^{1/10}$

#### More Caveats

- Even for more common functions, comparing O() for small n values can be misleading
  - Quicksort: O(nlogn) (expected)
  - Insertion Sort: O(n<sup>2</sup>)(expected)
  - Yet in reality Insertion Sort is faster for small n's
  - We'll learn about these sorts later
- Usually talk about an algorithm being O(n) or whatever
  - But you can also prove bounds for entire problems
  - Ex: Sorting cannot take place faster than O(nlogn) in the worst case (assuming it's sequential and comparison-based; more on these later)

### Miscellaneous

- Not uncommon to evaluate for:
  - Best-case
  - Worst-case
  - 'Expected case'
- What are the run-times for BST lookup?
  - Best
     O(1) find at root
  - Worst O(n) tree is 1 long branch
  - 'Expected'
     O(logn) complicated; see book

#### **Notational Notes**

- We say (3*n*<sup>2</sup>+17) is in *O*(*n*<sup>2</sup>)
  - Confusingly, we also say/write:
    - (3*n*<sup>2</sup>+17) is O(*n*<sup>2</sup>)
    - $(3n^2+17) = O(n^2)$  (very common; in the book)
      - But it's not '=' as in 'equality':

- We would never say  $O(n^2) = (3n^2+17)$ 

- Perhaps the most accurate notation is f(n)∈ O(g(n))
  - Because O(g(n)) is a set of functions

## Analyzing code (worst case)

Basic operations take "some amount of" constant time:

- Arithmetic (fixed-width)
- Assignment to a variable
- Access one Java field or array index
- Etc.

(This is an *approximation of reality*: a useful "lie".)

Consecutive statementsSum of timesConditionalsTime of test plus slower branchLoopsSum of iterationsCallsTime of call's bodyRecursionSolve recurrence equation

## Analyzing code

What are the run-times for the following code:

- 1. for(int i=0;i<n;i++) O(1) O(n)
- 2. for(int i=0;i<=n+100;i+=14) O(1) O(n)
- 3. for(int i=0;i<n;i++) for(int j=0;j<i;j++) O(1)O(n<sup>2</sup>)
- 4. for(int i=0;i<n;i++) for(int j=0;j<n;j++) O(n) O(n<sup>3</sup>)
- 5. for(int i=1;i<n;i\*=2) O(1) O(logn)
- 6. for(int i=0;i<n;i++) if(m(i)) O(n) else O(1) Depends on m(); worst:

0(n<sup>2</sup>)

## Big Oh's Family

- Big Oh: Upper bound: O(f(n)) is the set of all functions asymptotically less than or equal to f(n): '≤' of functions
   g(n) is in O(f(n)) if there exist constants c and n₀ such that g(n) ≤ c f(n) for all n ≥ n₀
- Big Omega: Lower bound:  $\Omega(f(n))$  is the set of all functions asymptotically greater than or equal to f(n): ' $\geq$ ' of functions
  - g(n) is in  $\Omega(f(n))$  if there exist constants c and  $n_0$  such that  $g(n) \ge c f(n)$  for all  $n \ge n_0$
- Big Theta: Tight bound: θ( f(n) ) is the set of all functions asymptotically equal to f(n): '=' of functions
  - Intersection of O(f(n)) and  $\Omega(f(n))$  (use *different constants*)

## Regarding use of terms

Common error is to say O(f(n)) when you mean  $\theta(f(n))$ 

- People often say O() to mean a tight bound
- Say we have f(n)=n; we could say f(n) is in O(n), which is true, but only conveys the upper-bound
- Somewhat incomplete; instead say it is  $\theta(n)$
- This gives us a tighter bound

Less common notation:

- "little-oh": like "big-Oh" but strictly less than
  - Example: n is  $o(n^2)$  but not o(n)
- "little-omega": like "big-Omega" but strictly greater than
  - Example: n is  $\omega(\log n)$  but not  $\omega(n)$

#### **Recurrence Relations**

- Computing run-times gets interesting with recursion
- Say we want to perform some computation recursively on a list of size n
  - Conceptually, in each recursive call we:
    - Perform some amount of work, call it w(n)
    - Call the function recursively with a smaller portion of the list

So, if we do w(n) work per step, and reduce the n in the next recursive call by 1, we do total work: T(n)=w(n)+T(n-1) With some base case, like T(1)=5=O(1)

#### Recursive version of sum array

Recursive:

– Recurrence is

k + k + ... + k

for *n* times

```
int sum(int[] arr){
   return help(arr,0);
}
int help(int[]arr,int i) {
   if(i==arr.length)
      return 0;
   return arr[i] + help(arr,i+1);
}
```

```
Recurrence Relation: T(n) = O(1) + T(n-1)
```

## Recurrence Relations (cont.)

#### Say we have the following recurrence relation:

```
T(n)=2+T(n-1)
```

```
T(1)=5
```

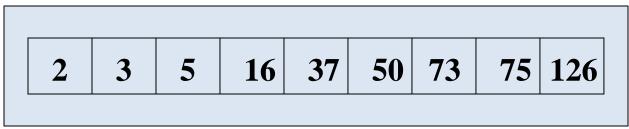
Now we just need to solve it; that is, reduce it to a closed form

#### Start by writing it out: T(n)=2+T(n-1)=2+2+T(n-2)=2+2+2+T(n-3) =2+2+2+...+2+T(1)=2+2+2+...+2+5 =2k+5, where k is the # of times we expanded T() We expanded it out n-1 times, so T(n)=2(n-1)+5=2n+3=O(n)

Find an integer in a *sorted* array

```
// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){
    ???
}
```

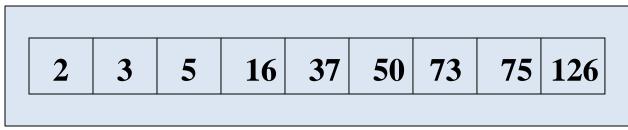
#### Linear search



Find an integer in a *sorted* array

```
// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k) {
   for(int i=0; i < arr.length; ++i)
        if(arr[i] == k)
        return true;
   return false;
}
Best case: 6ish steps = O(1)
   Worst case: 6ish*(arr.length)
        = O(arr.length) = O(n)</pre>
```

#### Binary search



Find an integer in a *sorted* array

Can also be done non-recursively (same run-time)

```
// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k) {
    return help(arr,k,0,arr.length);
}
boolean help(int[]arr, int k, int lo, int hi) {
    int mid = (hi+lo)/2; //i.e., lo+(hi-lo)/2
    if(lo==hi) return false;
    if(arr[mid]==k) return true;
    if(arr[mid]< k) return help(arr,k,mid+1,hi);
    else return help(arr,k,lo,mid);
}</pre>
```

#### Binary search

```
Best case: 8ish steps = O(1)
Worst case:
```

T(n) = 10ish + T(n/2) where n is hi-lo

```
// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k) {
    return help(arr,k,0,arr.length);
}
boolean help(int[]arr, int k, int lo, int hi) {
    int mid = (hi+lo)/2;
    if(lo==hi) return false;
    if(arr[mid]==k) return true;
    if(arr[mid]< k) return help(arr,k,mid+1,hi);
    else return help(arr,k,lo,mid);
}</pre>
```

## Solving Recurrence Relations

- 1. Determine the recurrence relation. What is the base case?
  - T(n) = 10 + T(n/2)T(1) = 8
- 2. "Expand" the original relation to find an equivalent general expression *in terms of the number of expansions*.

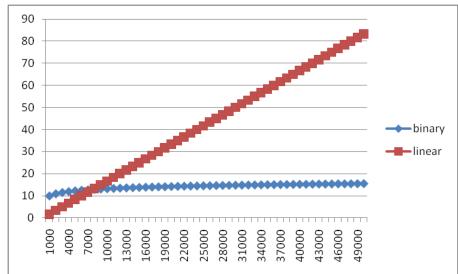
$$- T(n) = 10 + 10 + T(n/4)$$
  
= 10 + 10 + 10 + T(n/8)

- = ...
- =  $10k + T(n/(2^k))$  where k is the # of expansions
- 3. Find a closed-form expression by setting *the number of expansions* to a value which reduces the problem to a base case
  - $n/(2^k) = 1$  means  $n = 2^k$  means  $k = \log_2 n$
  - So  $T(n) = 10 \log_2 n + 8$  (get to base case and do it)
  - So T(n) is O(log n)

### Linear vs Binary Search

- So binary search is O(log n) and linear is
   O(n)
  - Given the constants, linear search could still be faster for small values of n

Example w/ hypothetical constants:



#### What about a binary version of sum?

```
int sum(int[] arr) {
    return help(arr,0,arr.length);
}
int help(int[] arr, int lo, int hi) {
    if(lo==hi) return 0;
    if(lo==hi-1) return arr[lo];
    int mid = (hi+lo)/2;
    return help(arr,lo,mid) + help(arr,mid,hi);
}
```

```
Recurrence is T(n) = O(1) + 2T(n/2) = O(n)
```

(Proof left as an exercise)

"Obvious": have to read the whole array

- You can't do better than O(n)
- Or can you...

We'll see a parallel version of this much later

With  $\infty$  processors,  $T(n) = O(1) + \mathbf{1}T(n/2) = O(\log n)$ 

#### Another example

- T(n)=n + 2T(n/2), T(1)=c
  - Any guesses as to what algorithm(s) this represents?
    - Mergesort & quicksort (assuming good pivot selection)
  - Any guesses as to what the closed form for this is?
    - O(nlogn)

#### Really common recurrences

Should know how to solve recurrences but also recognize some really common ones:

| linear                    |
|---------------------------|
| linear                    |
| logarithmic               |
| exponential               |
| quadratic                 |
| linear                    |
| <i>O</i> (n <b>log</b> n) |
|                           |

Note big-Oh can also use more than one variable (graphs: vertices & edges)

Example: you can (and will in proj3!) sum all elements of an *n*-by-*m* matrix in O(nm)