
2012-08-07

1

CSE 332 Data Abstractions:

Data Races and Memory,
Reordering, Deadlock,

Readers/Writer Locks, and
Condition Variables (oh my!)

Kate Deibel

Summer 2012

August 6, 2012 CSE 332 Data Abstractions, Summer 2012 1

THE FINAL EXAM

ominous music

August 6, 2012 CSE 332 Data Abstractions, Summer 2012 2

The Final

It is next Wednesday, August 15

It will take up the entire class period

Is it comprehensive? Yes and No

 Will primarily call upon only what we covered since
the midterm (starting at sorting up through next
Monday's lecture on minimum spanning trees)

 Still, you will need to understand algorithmic
analysis, big-Oh, and best/worst-case for any data
structures we have discussed

 You will NOT be doing tree or heap manipulations
but you may (i.e., will) do some graph algorithms

July 11, 2012 CSE 332 Data Abstractions, Summer 2012 3

Specific Topics

Although the final is by no means finalized, knowing
the following would be good:

 How to do Big-Oh (yes, again!)

 Best and worst case for all data structures and algorithms we
covered

 Sorting algorithm properties (in-place, stable)

 Graph representations

 Topological sorting

 Dijkstra's shortest-path algorithm

 Parallel Maps and Reductions

 Parallel Prefix, Pack, and Sorting

 ForkJoin Library code

 Key ideas / high-level notions of concurrency

July 11, 2012 CSE 332 Data Abstractions, Summer 2012 4

Book, Calculator, and Notes

The exam is closed book

You can bring a calculator if you want

You can bring a limited set of notes:

 One 3x5 index card (both sides)

 Must be handwritten (no typing!)

 You must turn in the card with your exam

July 11, 2012 CSE 332 Data Abstractions, Summer 2012 5

MORE ON RACE
CONDITIONS

Some horses like wet tracks or dry tracks or muddy tracks…

August 6, 2012 CSE 332 Data Abstractions, Summer 2012 6

2012-08-07

2

Races
A race condition occurs when the computation result depends on
scheduling (how threads are interleaved on ≥1 processors)

 Only occurs if T1 and T2 are scheduled in a particular way

 As programmers, we cannot control the scheduling of threads

 Program correctness must be independent of scheduling

Race conditions are bugs that exist only due to concurrency

 No interleaved scheduling with 1 thread

Typically, the problem is some intermediate state that "messes
up" a concurrent thread that "sees" that state

We will distinguish between data races and bad interleavings,
both of which are types of race condition bugs

August 6, 2012 CSE 332 Data Abstractions, Summer 2012 7

Data Races

A data race is a type of race condition that can
happen in two ways:

 Two threads potentially write a variable at the same time

 One thread potentially write a variable while another reads

Not a race: simultaneous reads provide no errors

Potentially is important

 We claim that code itself has a data race independent of any
particular actual execution

Data races are bad, but they are not the only form of
race conditions

 We can have a race, and bad behavior, without any data race

August 6, 2012 CSE 332 Data Abstractions, Summer 2012 8

Stack Example

August 6, 2012 CSE 332 Data Abstractions, Summer 2012 9

class Stack<E> {

 private E[] array = (E[])new Object[SIZE];

 int index = -1;

 synchronized boolean isEmpty() {

 return index==-1;

 }

 synchronized void push(E val) {

 array[++index] = val;

 }

 synchronized E pop() {

 if(isEmpty())

 throw new StackEmptyException();

 return array[index--];

 }

}

A Race Condition: But Not a Data Race

In a sequential world,
this code is of iffy,
ugly, and questionable
style, but correct

The "algorithm" is the
only way to write a
peek helper method if

this interface is all you
have to work with

class Stack<E> {

 …

 synchronized boolean isEmpty() {…}

 synchronized void push(E val) {…}

 synchronized E pop(E val) {…}

E peek() {

 E ans = pop();

 push(ans);

 return ans;

}

August 6, 2012 CSE 332 Data Abstractions, Summer 2012 10

Note that peek() throws
the StackEmpty exception
via its call to pop()

peek in a Concurrent Context
peek has no overall effect on the shared data

 It is a "reader" not a "writer"

 State should be the same after it executes as before

This implementation creates an inconsistent
intermediate state

 Calls to push and pop are synchronized,so there are no

data races on the underlying array

 But there is still a race condition

 This intermediate state
should not be exposed

 Leads to several
bad interleavings

E peek() {

 E ans = pop();

 push(ans);

 return ans;

}

August 6, 2012 CSE 332 Data Abstractions, Summer 2012 11

Example 1: peek and isEmpty

Property we want:
If there has been a push (and no pop),
then isEmpty should return false

With peek as written, property can be

violated – how?

E ans = pop();

push(ans);

return ans;

push(x)

boolean b = isEmpty()

T
im

e

Thread 2 Thread 1 (peek)

August 6, 2012 CSE 332 Data Abstractions, Summer 2012 12

2012-08-07

3

Example 1: peek and isEmpty

Property we want:
If there has been a push (and no pop),
then isEmpty should return false

With peek as written, property can be

violated – how?

E ans = pop();

push(ans);

return ans;

push(x)

boolean b = isEmpty()

T
im

e

Thread 2 Thread 1 (peek)

August 6, 2012 CSE 332 Data Abstractions, Summer 2012 13

Race causes error with:
 T2: push(x)
 T1: pop()
 T2: isEmpty()

Example 2: peek and push

Property we want:
Values are returned from pop in LIFO order

With peek as written, property can be

violated – how?

E ans = pop();

push(ans);

return ans;

T
im

e

Thread 2 Thread 1 (peek)

August 6, 2012 CSE 332 Data Abstractions, Summer 2012 14

push(x)

push(y)

E e = pop()

Property we want:
Values are returned from pop in LIFO order

With peek as written, property can be

violated – how?

Example 2: peek and push

E ans = pop();

push(ans);

return ans;

T
im

e

Thread 2 Thread 1 (peek)

August 6, 2012 CSE 332 Data Abstractions, Summer 2012 15

push(x)

push(y)

E e = pop()

Race causes error with:
 T2: push(x)
 T1: pop()
 T2: push(x)
 T1: push(x)

Example 3: peek and peek

Property we want:
peek does not throw an exception unless
the stack is empty

With peek as written, property can be

violated – how?

E ans = pop();

push(ans);

return ans;

T
im

e

Thread 2 Thread 1 (peek)

August 6, 2012 CSE 332 Data Abstractions, Summer 2012 16

E ans = pop();

push(ans);

return ans;

The Fix
peek needs synchronization to disallow interleavings

 The key is to make a larger critical section

 This protects the intermediate state of peek

 Use re-entrant locks; will allow calls to push and pop

 Can be done in stack (left) or an external class (right)

August 6, 2012 CSE 332 Data Abstractions, Summer 2012 17

class Stack<E> {

 …

 synchronized E peek(){

 E ans = pop();

 push(ans);

 return ans;

 }

}

class C {

 <E> E myPeek(Stack<E> s){

 synchronized (s) {

 E ans = s.pop();

 s.push(ans);

 return ans;

 }

 }

}

An Incorrect "Fix"

So far we have focused on problems created when
peek performs writes that lead to an incorrect

intermediate state

A tempting but incorrect perspective

 If an implementation of peek does not write anything,

then maybe we can skip the synchronization?

Does not work due to data races with push and pop

 Same issue applies with other readers, such as isEmpty

August 6, 2012 CSE 332 Data Abstractions, Summer 2012 18

2012-08-07

4

Another Incorrect Example

class Stack<E> {

 private E[] array = (E[])new Object[SIZE];

 int index = -1;

 boolean isEmpty() { // unsynchronized: wrong?!

 return index==-1;

 }

 synchronized void push(E val) {

 array[++index] = val;

 }

 synchronized E pop() {

 return array[index--];

 }

 E peek() { // unsynchronized: wrong!

 return array[index];

 }

}

August 6, 2012 CSE 332 Data Abstractions, Summer 2012 19

Why Wrong?
It looks like isEmpty and peek can "get away with
this" because push and pop adjust the stack's state

using "just one tiny step"

But this code is still wrong and depends on
language-implementation details you cannot assume

 Even "tiny steps" may require multiple steps in
implementation: array[++index] = val probably

takes at least two steps

 Code has a data race, allowing very strange
behavior

Do not introduce a data race, even if every
interleaving you can think of is correct

August 6, 2012 CSE 332 Data Abstractions, Summer 2012 20

Getting It Right

Avoiding race conditions on shared resources
is difficult

 Decades of bugs have led to some conventional
wisdom and general techniques known to work

We will discuss some key ideas and trade-offs

 More available in the suggested additional readings

 None of this is specific to Java or a particular book

 May be hard to appreciate in beginning

 Come back to these guidelines over the years

 Do not try to be fancy

August 6, 2012 CSE 332 Data Abstractions, Summer 2012 21

GOING FURTHER WITH
EXCLUSION AND LOCKING

Yale University is the best place to study locks…

August 6, 2012 CSE 332 Data Abstractions, Summer 2012 22

Three Choices for Memory

For every memory location in your program
(e.g., object field), you must obey at least
one of the following:

1. Thread-local: Do not use the location in >1 thread

2. Immutable: Never write to the memory location

3. Synchronized: Control access via synchronization

all memory

needs synchronization

August 6, 2012 CSE 332 Data Abstractions, Summer 2012 23

immutable
memory

thread-local
memory

Thread-Local

Whenever possible, do not share resources!

 Easier for each thread to have its own thread-local copy of a
resource instead of one with shared updates

 Correct only if threads do not communicate through resource

 In other words, multiple copies are correct approach

 Example: Random objects

 Note: Because each call-stack is thread-local, never need to
synchronize on local variables

In typical concurrent programs, the vast majority of
objects should be thread-local and shared-memory
usage should be minimized

August 6, 2012 CSE 332 Data Abstractions, Summer 2012 24

2012-08-07

5

Immutable

Whenever possible, do not update objects

 Make new objects instead

One of the key tenets of functional programming
(see CSE 341 Programming Languages)

 Generally helpful to avoid side-effects

 Much more helpful in a concurrent setting

If a location is only ever read, never written, no
synchronization needed

 Simultaneous reads are not races (not a problem!)

In practice, programmers usually over-use mutation
so you should do your best to minimize it

August 6, 2012 CSE 332 Data Abstractions, Summer 2012 25

Everything Else: Keep it Synchronized

After minimizing the amount of memory that is both
(1) thread-shared and (2) mutable, we need to follow
guidelines for using locks to keep that data consistent

Guideline #0: No data races

 Never allow two threads to read/write or
write/write the same location at the same time

Necessary:

 In Java or C, a program with a data race is almost
always wrong

But Not Sufficient:

 Our peek example had no data races

August 6, 2012 CSE 332 Data Abstractions, Summer 2012 26

Consistent Locking

Guideline #1: Consistent Locking

For each location that requires synchronization, we
should have a lock that is always held when reading
or writing the location

 We say the lock guards the location

 The same lock can guard multiple locations (and often should)

 Clearly document the guard for each location

 In Java, the guard is often the object containing the location

 this inside object methods

 Also common to guard a larger structure with one lock to
ensure mutual exclusion on the structure

August 6, 2012 CSE 332 Data Abstractions, Summer 2012 27

Consistent Locking
The mapping from locations to guarding locks is conceptual, and
must be enforced by you as the programmer

 It partitions the shared-&-mutable locations into "which lock"

Consistent locking is:

Not Sufficient:
It prevents all data races, but still allows bad interleavings

 Our peek example used consistent locking, but had exposed
intermediate states and bad interleavings

Not Necessary:

 Can dynamically change the locking protocol

August 6, 2012 CSE 332 Data Abstractions, Summer 2012 28

Beyond Consistent Locking
Consistent locking is an excellent guideline

 A "default assumption" about program design

 You will save yourself many a headache using this guideline

But it is not required for correctness:
Different program phases can use different locking techniques

 Provided all threads coordinate moving to the next phase

Example from Project 3 Version 5:

 A shared grid being updated, so use a lock for each entry

 But after the grid is filled out, all threads except 1 terminate
thus making synchronization no longer necessary (i.e., now
only thread local)

 And later the grid is only read in response to queries thereby
making synchronization doubly unnecessary (i.e., immutable)

August 6, 2012 CSE 332 Data Abstractions, Summer 2012 29

LOCK GRANULARITY

Whole-grain locks are better than overly processed locks…

August 6, 2012 CSE 332 Data Abstractions, Summer 2012 30

2012-08-07

6

Lock Granularity
Coarse-Grained: Fewer locks (more objects per lock)

 Example: One lock for entire data structure (e.g., array)

 Example: One lock for all bank accounts

Fine-Grained: More locks (fewer objects per lock)

 Example: One lock per data element (e.g., array index)

 Example: One lock per bank account

"Coarse-grained vs. fine-grained" is really a continuum

August 6, 2012 CSE 332 Data Abstractions, Summer 2012 31

…

…

Trade-Offs

Coarse-grained advantages

 Simpler to implement

 Faster/easier to implement operations that access multiple
locations (because all guarded by the same lock)

 Easier to implement modifications of data-structure shape

Fine-grained advantages

 More simultaneous access (improves performance
when coarse-grained would lead to unnecessary blocking)

Guideline #2: Lock Granularity

Start with coarse-grained (simpler), move to fine-grained
(performance) only if contention on coarse locks is an issue.
Alas, often leads to bugs.

August 6, 2012 CSE 332 Data Abstractions, Summer 2012 32

Example: Separate Chaining Hashtable

Coarse-grained: One lock for entire hashtable

Fine-grained: One lock for each bucket

Which supports more concurrency for insert and lookup?

Fine-grained; allows simultaneous access to different
buckets

Which makes implementing resize easier?

Coarse-grained; just grab one lock and proceed

Maintaining a numElements field will destroy the potential

benefits of using separate locks for each bucket, why?

Updating each insert without a coarse lock would be a
data race

August 6, 2012 CSE 332 Data Abstractions, Summer 2012 33

Critical-Section Granularity

A second, orthogonal granularity issue is the size of
critical-sections

 How much work should we do while holding lock(s)

If critical sections run for too long:

 Performance loss as other threads are blocked

If critical sections are too short:

 Bugs likely as you broke up something where other
threads shouldn't be able to see intermediate state

Guideline #3: Granularity
Do not do expensive computations or I/O in critical
sections, but also do not introduce race conditions

August 6, 2012 CSE 332 Data Abstractions, Summer 2012 34

Example: Critical-Section Granularity

Suppose we want to change the value for a key
in a hashtable without removing it from the table

 Assume lock guards the whole table

August 6, 2012 CSE 332 Data Abstractions, Summer 2012 35

synchronized(lock) {

 v1 = table.lookup(k);

 v2 = expensive(v1);

 table.remove(k);

 table.insert(k,v2);

}

Papa Bear’s critical
section was too long

Table is locked during
the expensive call

Example: Critical-Section Granularity

Suppose we want to change the value for a key
in a hashtable without removing it from the table

 Assume lock guards the whole table

August 6, 2012 CSE 332 Data Abstractions, Summer 2012 36

synchronized(lock) {

 v1 = table.lookup(k);

}

v2 = expensive(v1);

synchronized(lock) {

 table.remove(k);

 table.insert(k,v2);

}

Mama Bear’s critical section
was too short

If another thread updated
the entry, we will lose the
intervening update

2012-08-07

7

Example: Critical-Section Granularity

Suppose we want to change the value for a key
in a hashtable without removing it from the table

 Assume lock guards the whole table

August 6, 2012 CSE 332 Data Abstractions, Summer 2012 37

done = false;

while(!done) {

 synchronized(lock) {

 v1 = table.lookup(k);

 }

 v2 = expensive(v1);

 synchronized(lock) {

 if(table.lookup(k)==v1) {

 done = true;

 table.remove(k);

 table.insert(k,v2);

}}}

Baby Bear’s critical
section was just right

if another update
occurred, we will try
our update again

Atomicity

An operation is atomic if no other thread can see it
partly executed

 Atomic as in "appears indivisible"

 We typically want ADT operations atomic, even to other
threads running operations on the same ADT

Guideline #4: Atomicity

 Think in terms of what operations need to be atomic

 Make critical sections just long enough to preserve atomicity

 Then design locking protocol to implement critical sections

In other words:

Think about atomicity first and locks second

August 6, 2012 CSE 332 Data Abstractions, Summer 2012 38

Do Not Roll Your Own

In real life, you rarely write your own data structures

 Excellent implementations provided in standard libraries

 Point of CSE 332 is to understand the key trade-offs,
abstractions, and analysis of such implementations

Especially true for concurrent data structures

 Far too difficult to provide fine-grained synchronization
without race conditions

 Standard thread-safe libraries like ConcurrentHashMap are

written by world experts and been extensively vetted

Guideline #5: Libraries

Use built-in libraries whenever they meet your needs

August 6, 2012 CSE 332 Data Abstractions, Summer 2012 39

Motivating Memory-Model Issues

Tricky and surprisingly wrong unsynchronized
concurrent code

First understand why it looks
like the assertion cannot fail:

Easy case:
A call to g ends before any call
to f starts

Easy case:
At least one call to f completes
before call to g starts

If calls to f and g interleave…

August 6, 2012 CSE 332 Data Abstractions, Summer 2012 40

class C {

 private int x = 0;

 private int y = 0;

 void f() {

 x = 1;

 y = 1;

 }

 void g() {

 int a = y;

 int b = x;

 assert(b >= a);

 }

}

Interleavings Are Not Enough
There is no interleaving of f and g such that the

assertion fails

Proof #1:
Exhaustively consider all possible orderings of access
to shared memory (there are 6)

August 6, 2012 CSE 332 Data Abstractions, Summer 2012 41

Interleavings Are Not Enough

Proof #2:
Exhaustively consider all possible orderings of access
to shared memory (there are 6)

If !(b>=a), then a==1 and b==0.
But if a==1, then y=1 happened before a=y.

Because programs execute in order:
 a=y happened before b=x
 and x=1 happened before y=1
So by transitivity, b==1.

Contradiction.

August 6, 2012 CSE 332 Data Abstractions, Summer 2012 42

x = 1;

y = 1;

int a = y;

int b = x;

assert(b >= a);

Thread 1: f Thread 2: g

2012-08-07

8

Wrong

However, the code has a data race

 Unsynchronized read/write or write/write of the
memory same location

If code has data races, you cannot reason
about it with interleavings

 This is simply the rules of Java (and C, C++,
C#, other languages)

 Otherwise we would slow down all programs
just to "help" those with data races, and that
would not be a good engineering trade-off

 So the assertion can fail

August 6, 2012 CSE 332 Data Abstractions, Summer 2012 43

Why

For performance reasons, the compiler and the
hardware will often reorder memory operations

 Take a compiler or computer architecture course to learn
more as to why this is good thing

Of course, compilers cannot just reorder anything
they want without careful consideration

 Each thread computes things by executing code in order

 Consider: x=17; y=x;

August 6, 2012 CSE 332 Data Abstractions, Summer 2012 44

x = 1;

y = 1;

int a = y;

int b = x;

assert(b >= a);

Thread 1: f Thread 2: g

The Grand Compromise
The compiler/hardware will NEVER:

 Perform a memory reordering that affects the result of a
single-threaded program

 Perform a memory reordering that affects the result of a
data-race-free multi-threaded program

So: If no interleaving of your program has a data race,
 then you can forget about all this reordering nonsense:
 the result will be equivalent to some interleaving

The Big Picture:

 Your job is to avoid data races

 The compiler/hardware's job is to give illusion of interleaving
if you do your job right

August 6, 2012 CSE 332 Data Abstractions, Summer 2012 45

Fixing Our Example

Naturally, we can use synchronization to avoid data
races and then, indeed, the assertion cannot fail

August 6, 2012 CSE 332 Data Abstractions, Summer 2012 46

class C {

 private int x = 0;

 private int y = 0;

 void f() {

 synchronized(this) { x = 1; }

 synchronized(this) { y = 1; }

 }

 void g() {

 int a, b;

 synchronized(this) { a = y; }

 synchronized(this) { b = x; }

 assert(b >= a);

 }

}

A Second Fix: Stay Away from This
Java has volatile fields: accesses do not count as data races

 But you cannot read-update-write

Implementation Details

 Slower than regular fields but faster than locks

 Really for experts: avoid them; use standard libraries instead

 And why do you need code like this anyway?

August 6, 2012 CSE 332 Data Abstractions, Summer 2012 47

class C {

 private volatile int x = 0;

 private volatile int y = 0;

 void f() {

 x = 1; y = 1;

 }

 void g() {

 int a = y; int b = x;

 assert(b >= a);

 }

}

Code That is Wrong
Here is a more realistic example of code that is wrong

 No guarantee Thread 2 will ever stop (due to data race)

 But honestly it will "likely work in practice"

August 6, 2012 CSE 332 Data Abstractions, Summer 2012 48

class C {

 boolean stop = false;

 void f() {

 while(!stop) {

 // draw a monster

 }

 }

 void g() {

 stop = didUserQuit();

 }

}

Thread 1: f()

Thread 2: g()

2012-08-07

9

DEADLOCK

Not nearly as silly as Deathlok from Marvel comics…

August 6, 2012 CSE 332 Data Abstractions, Summer 2012 49

Motivating Deadlock Issues

Consider the following method for transfering money
between bank accounts

During call to a.deposit, the thread holds two locks

 Let's investigate when this may be a problem

August 6, 2012 CSE 332 Data Abstractions, Summer 2012 50

class BankAccount {

 …

 synchronized void withdraw(int amt) {…}

 synchronized void deposit(int amt) {…}

 synchronized void transferTo(int amt,

 BankAccount a) {

 this.withdraw(amt);

 a.deposit(amt);

 }

}

The Deadlock

Suppose x and y are fields holding accounts

August 6, 2012 CSE 332 Data Abstractions, Summer 2012 51

acquire lock for x

do withdraw from x

block on lock for y

acquire lock for y

do withdraw from y

block on lock for x

Thread 1:
x.transferTo(1,y)

T
im

e

Thread 2:
y.transferTo(1,x)

The Dining Philosophers

Five philosophers go out to dinner
together at an Italian restaurant

They sit at a round table; one
fork per plate setting

For etiquette reasons, the
philosophers need two forks
to eat spaghetti properly

When the spaghetti comes,
each philosopher proceeds to
grab their right fork, then
their left fork

‘Locking' for each fork results in a deadlock

August 6, 2012 CSE 332 Data Abstractions, Summer 2012 52

Deadlock

A deadlock occurs when there are threads T1, …, Tn
such that:

 For i=1 to n-1, Ti is waiting for at least one
resource held by Ti+1

 Tn is waiting for a resource held by T1

In other words, there is a cycle of waiting

 More formally, a graph of dependencies is cyclic

Deadlock avoidance in programming amounts to
techniques to ensure a cycle can never arise

August 6, 2012 CSE 332 Data Abstractions, Summer 2012 53

Back to Our Example

Options for deadlock-proof transfer:

1. Make a smaller critical section:
transferTo not synchronized

 Exposes intermediate state after withdraw before deposit

 May be okay, but exposes wrong total amount to bank

2. Coarsen lock granularity:
One lock for all accounts allowing transfers between them

 Works, but sacrifices concurrent deposits/withdrawals

3. Give every bank-account a unique number and always
acquire locks in the same order

 Entire program should obey this order to avoid cycles

 Code acquiring only one lock can ignore the order

August 6, 2012 CSE 332 Data Abstractions, Summer 2012 54

2012-08-07

10

Ordering Locks

August 6, 2012 CSE 332 Data Abstractions, Summer 2012 55

class BankAccount {

 …

 private int acctNumber; // must be unique

 void transferTo(int amt, BankAccount a) {

 if(this.acctNumber < a.acctNumber)

 synchronized(this) {

 synchronized(a) {

 this.withdraw(amt);

 a.deposit(amt);

 }}

 else

 synchronized(a) {

 synchronized(this) {

 this.withdraw(amt);

 a.deposit(amt);

 }}

 }

}

StringBuffer Example

From the Java standard library

August 6, 2012 CSE 332 Data Abstractions, Summer 2012 56

class StringBuffer {

 private int count;

 private char[] value;

 …

 synchronized append(StringBuffer sb) {

 int len = sb.length();

 if(this.count + len > this.value.length)

 this.expand(…);

 sb.getChars(0,len,this.value,this.count);

 …
}

 synchronized getChars(int x, int, y,

 char[] a, int z) {

 "copy this.value[x..y] into a starting at z"

 }

}

Two Problems
Problem #1:

Lock for sb not held between calls to sb.length and sb.getChars

 So sb could get longer

 Would cause append to throw an ArrayBoundsException

Problem #2:

Deadlock potential if two threads try to append in opposite

directions, identical to the bank-account first example

Not easy to fix both problems without extra copying:

 Do not want unique ids on every StringBuffer

 Do not want one lock for all StringBuffer objects

Actual Java library:

Fixed neither (left code as is; changed documentation)

 Up to clients to avoid such situations with their own protocols

August 6, 2012 CSE 332 Data Abstractions, Summer 2012 57

Perspective

Code like account-transfer and string-buffer append
are difficult to deal with for deadlock

Easier case: different types of objects

 Can establish and document a fixed order among types

 Example: "When moving an item from the hashtable to
the work queue, never try to acquire the queue lock
while holding the hashtable lock"

Easier case: objects are in an acyclic structure

 Can use the data structure to determine a fixed order

 Example: "If holding a tree node’s lock, do not acquire
other tree nodes’ locks unless they are children"

 August 6, 2012 CSE 332 Data Abstractions, Summer 2012 58

IMPROVING LITERACY:
READER/WRITER LOCKS

We encourage multiple readers…

August 6, 2012 CSE 332 Data Abstractions, Summer 2012 59

Reading vs. Writing

Recall:

 Multiple concurrent reads of same memory: Not a problem

 Multiple concurrent writes of same memory: Problem

 Multiple concurrent read & write of same memory: Problem

So far:

 If concurrent write/write or read/write might occur, use
synchronization to ensure one-thread-at-a-time

But this is unnecessarily conservative:

 Could still allow multiple simultaneous readers!

2012-08-07

11

Example

Consider a hashtable with one coarse-grained lock

 Only one thread can perform operations at a time

But suppose:

 There are many simultaneous lookup operations

 And insert operations are very rare

Note:
Critically important that lookup does not actually

mutate shared memory, like a move-to-front list or
splay tree operation would

Readers/Writer locks
A new synchronization ADT: the readers/writer lock

A lock’s states fall into three categories:

 “not held”

 “held for writing” by one thread

 “held for reading” by one or more threads

Operations:

 new: make a new lock, initially “not held”

 acquire_write: block if currently “held for reading” or if “held for

 writing”, else make “held for writing”

 release_write: make “not held”

 acquire_read: block if currently “held for writing”, else

 make/keep “held for reading” and increment
 readers count

 release_read: decrement readers count, if 0, make “not held”

ADT Invariants:

0 writers 1
0 readers
writers ╳ readers==0

Pseudocode Example (not Java)

class Hashtable<K,V> {

 …

 // coarse-grained, one lock for table

 RWLock lk = new RWLock();

 V lookup(K key) {

 int bucket = hasher(key);

 lk.acquire_read();

 … read array[bucket] …

 lk.release_read();

 }

 void insert(K key, V val) {

 int bucket = hasher(key);

 lk.acquire_write();

 … write array[bucket] …

 lk.release_write();

 }

}

Readers/Writer Lock Details
A readers/writer lock implementation (which is “not our
problem”) usually gives priority to writers:

 After a writer blocks, no readers arriving later will get the
lock before the writer

 Otherwise an insert could starve

Re-entrant (same thread acquires lock multiple times)?

 Mostly an orthogonal issue

 But some libraries support upgrading from reader to writer

Why not use readers/writer locks with more fine-grained
locking? Like on each bucket?

 Not wrong, but likely not worth it due to low contention

In Java
[Note: Not needed in your project/homework]

Java’s synchronized statement does not support readers/writer

Instead, the Java library has

java.util.concurrent.locks.ReentrantReadWriteLock

Details:

 Implementation is different

 methods readLock and writeLock return objects that
themselves have lock and unlock methods

 Does not have writer priority or reader-to-writer upgrading

 If you want to use them, be sure to read the documentation

CONDITION VARIABLES

The natural successor to shampoo variables

August 6, 2012 CSE 332 Data Abstractions, Summer 2012 66

2012-08-07

12

Motivating Condition Variables

To motivate condition variables, consider the canonical example
of a bounded buffer for sharing work among threads

Bounded buffer: A queue with a fixed size

 Only slightly simpler if unbounded, core need still arises

For sharing work – think an assembly line:

 Producer thread(s) do some work and enqueue result objects

 Consumer thread(s) dequeue objects and do next stage

 Must synchronize access to the queue

f e d c buffer

back front

producer(s)
enqueue

consumer(s)
dequeue

First Attempt

class Buffer<E> {

 E[] array = (E[])new Object[SIZE];

 … // front, back fields, isEmpty, isFull methods

 synchronized void enqueue(E elt) {

 if(isFull())

 ???

 else

 … add to array and adjust back …

 }

 synchronized E dequeue()

 if(isEmpty())

 ???

 else

 … take from array and adjust front …

 }

}

Waiting
enqueue to a full buffer should not raise an exception

but should wait until there is room

dequeue from an empty buffer should not raise an

exception but should wait until there is data

One bad approach is to spin-wait (wasted work and
keep grabbing lock)

 void enqueue(E elt) {

 while(true) {

 synchronized(this) {

 if(isFull()) continue;

 … add to array and adjust back …

 return;

}}}

// dequeue similar

What we Want
Better would be for a thread to simply wait until it can proceed

 It should not spin/process continuously

 Instead, it should be notified when it should try again

 In the meantime, let other threads run

Like locks, not something you can implement on your own

 Language or library gives it to you, typically implemented
with operating-system support

An ADT that supports this: condition variable

 Informs waiter(s) when the condition that causes it/them to
wait has varied

Terminology not completely standard; will mostly stick with Java

Java Approach: Not Quite Right

class Buffer<E> {

 …

 synchronized void enqueue(E elt) {

 if(isFull())

 this.wait(); // releases lock and waits

 add to array and adjust back

 if(buffer was empty)

 this.notify(); // wake somebody up

 }

 synchronized E dequeue() {

 if(isEmpty())

 this.wait(); // releases lock and waits

 take from array and adjust front

 if(buffer was full)

 this.notify(); // wake somebody up

 }

}

Key Ideas You Should Know
Java is a bit weird:

 Every object “is” a condition variable (also a lock)

 Other languages/libraries often make them separate

wait:

 “Register” running thread as interested in being woken up

 Then atomically: release the lock and block

 When execution resumes, thread again holds the lock

notify:

 Pick one waiting thread and wake it up

 No guarantee woken up thread runs next, just that it is no
longer blocked on the condition, now waiting for the lock

 If no thread is waiting, then do nothing

2012-08-07

13

The Bug in the Earlier Code

Between the time a thread is notified and it re-acquires
the lock, the condition can become false again!

synchronized void enqueue(E elt){

 if(isFull())

 this.wait();

 add to array and adjust back

 …

}

if(isFull())

 this.wait();

add to array

T
im

e

Thread 2 (dequeue) Thread 1 (enqueue)

take from array

if(was full)

 this.notify();

make full again

Thread 3 (enqueue)

Bug Fix

Guideline: Always re-check the condition after re-
 gaining the lock

For obscure (!!) reasons, Java is technically allowed to notify a
thread spuriously (i.e., for no reason and without actually
making a call to notify)

synchronized void enqueue(E elt) {

 while(isFull())

 this.wait();

 …

}

synchronized E dequeue() {

 while(isEmpty())

 this.wait();

 …

}

Another Bug

If multiple threads are waiting, we wake up only one

 Sure only one can do work now, but we cannot
forget the others!

T
im

e

while(isFull())

 this.wait();

…

Thread 1 (enqueue)

// dequeue #1

if(buffer was full)

 this.notify();

// dequeue #2

if(buffer was full)

 this.notify();

Thread 3 (dequeues) Thread 2 (enqueue)

while(isFull())

 this.wait();

…

Bug Fix

notifyAll wakes up all current waiters on the condition variable

Guideline: If in any doubt, use notifyAll

 Wasteful waking is much better than never waking up
(because you already need to re-check condition)

So why does notify exist? Well, it is faster when correct…

synchronized void enqueue(E elt) {

 …

 if(buffer was empty)

 this.notifyAll(); // wake everybody up

}

synchronized E dequeue() {

 …

 if(buffer was full)

 this.notifyAll(); // wake everybody up

}

Alternate Approach
An alternative is to call notify (not notifyAll) on
every enqueue / dequeue, not just when the buffer

was empty / full

 Easy: just remove the if statement

Alas, makes our code subtly wrong since it is
technically possible that both an enqueue and a
dequeue are both waiting.

Works fine if buffer is unbounded (linked list)
because then only dequeuers will ever wait

Alternate Approach Fixed
An alternate approach works if the enqueuers and
dequeuers wait on different condition variables

 But for mutual exclusion both condition variables
must be associated with the same lock

Java’s “everything is a lock / condition variable” does not
support this: each condition variable is associated with itself

Instead, Java has classes in java.util.concurrent.locks for

when you want multiple conditions with one lock

 class ReentrantLock has a method newCondition that
returns a new Condition object associate with the lock

 See the documentation if curious

2012-08-07

14

Final Comments on Condition Variable
notify/notifyAll often called signal/broadcast or
pulse/pulseAll

Condition variables are subtle and harder to use than locks

But when you need them, you need them

 Spinning and other workarounds do not work well

Fortunately, like most things you see in a data-structures
course, the common use-cases are provided in libraries written
by experts and have been thoroughly vetted

 Example: java.util.concurrent.ArrayBlockingQueue<E>
All condition variables hidden; just call put and take

Concurrency Summary
Access to shared resources introduces new kinds of bugs

 Data races

 Critical sections too small

 Critical sections use wrong locks

 Deadlocks

Requires synchronization

 Locks for mutual exclusion (common, various flavors)

 Condition variables for signaling others (less common)

Guidelines for correct use help avoid common pitfalls

Not always clear shared-memory is worth the pain

 But other models not a panacea (e.g., message passing)

