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A QUICK REVIEW 

Like last week was so like last week ago… like like like… 
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Reductions 

Such computations of this simple form are common 
enough to have a name: reductions (or reduces?) 
 

Produce single answer from collection via an 
associative operator 

 Examples: max, count, leftmost, rightmost, sum, … 

 Non-example: median 
 

Recursive results don’t have to be single numbers or 
strings and can be arrays or objects with fields 

 Example: Histogram of test results  
 

But some things are inherently sequential 

 How we process arr[i] may depend entirely on 
the result of processing arr[i-1] 
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Maps and Data Parallelism 

A map operates on each element of a collection 
independently to create a new collection of the 
same size 

 No combining results 

 For arrays, this is so trivial some hardware has 
direct support (often in graphics cards) 

 

Canonical example: Vector addition 
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int[] vector_add(int[] arr1, int[] arr2){ 
  assert (arr1.length == arr2.length); 
  result = new int[arr1.length]; 
  FORALL(i=0; i < arr1.length; i++) { 
    result[i] = arr1[i] + arr2[i]; 
  } 
  return result; 
} 
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Pack (Think Filtering) 

Given an array input and boolean function f(e) 
produce an array output containing only 
elements e such that f(e) is true 

 

Example:   
input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24] 

 f(e): is e > 10? 

 output [17, 11, 13, 19, 24] 

 

Is this parallelizable? Of course! 

 Finding elements for the output is easy 

 But getting them in the right place seems hard 
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Parallel Map + Parallel Prefix + Parallel Map 

1. Use a parallel map to compute a bit-vector for 
true elements 

input  [17, 4, 6, 8, 11, 5, 13, 19, 0, 24] 

bits   [ 1, 0, 0, 0,  1, 0,  1,  1, 0,  1] 
 

2. Parallel-prefix sum on the bit-vector 

bitsum [ 1, 1, 1, 1,  2, 2,  3,  4, 4,  5] 
 

3. Parallel map to produce the output 

 output [17, 11, 13, 19, 24] 

  
 

 

output = new array of size bitsum[n-1] 

FORALL(i=0; i < input.length; i++){ 

  if(bits[i]==1) 

    output[bitsum[i]-1] = input[i]; 

} 
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PARALLEL SORTING 

After this… perpendicular sorting… 
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Quicksort Review 

Recall that quicksort is sequential, in-place, and has 
expected time O(n log n) 

  

1. Pick a pivot element 

2. Partition all the data into:     

A. Elements less than the pivot 

B. The pivot 

C. Elements greater than the pivot 

3. Recursively sort A and C                             
  

best/expected case 

O(1) 

O(n) 

 

 

 

2T(n/2) 
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Parallelize Quicksort? 

How would we parallelize this? 
 

1. Pick a pivot element 

2. Partition all the data into: <pivot, pivot >pivot     

3. Recursively sort A and C      
 

Easy: Do the two recursive calls in parallel 

 Work: unchanged O(n log n) 

 Span: T(n) = O(n)+T(n/2) 
 = O(n) + O(n/2) + T(n/4) 
 = O(n) 

 So parallelism is O(log n) (i.e., work / span)                   
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Doing Better 
O(log n) speed-up with infinite number of processors 

is okay, but a bit underwhelming 

 Sort 109 elements 30 times faster 
 

A Google search strongly suggests quicksort cannot 
do better as the partitioning cannot be parallelized 

 The Internet has been known to be wrong!!  

 But we will need auxiliary storage (will no longer in place) 

 In practice, constant factors may make it not worth it, but 
remember Amdahl’s Law and the long-term situation 

 

Moreover, we already have everything we need to 
parallelize the partition step 

August 6, 2012 CSE 332 Data Abstractions, Summer 2012 11 



Parallel Partition with Auxiliary Storage 

Partition all the data into:        

A. The elements less than the pivot 

B. The pivot 

C. The elements greater than the pivot 

 

This is just two packs 

 We know a pack is O(n) work, O(log n) span 

 Pack elements < pivot into left side of aux array  

 Pack elements >pivot into right side of aux array 

 Put pivot between them and recursively sort 

 With a little more cleverness, we can do both packs at 
once with NO effect on asymptotic complexity 
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Analysis 

With O(log n) span for partition, the total 

span for quicksort is : 

 
T(n) = O(log n) + T(n/2)  

  = O(log n) + O(log n/2) + T(n/4) 

  = O(log n) + O(log n/2) + O(log n/4) + T(n/8) 

  ⁞ 

  = O(log2 n) 

 

 

So parallelism (work / span) is O(n / log n) 
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Example 

 Step 1: pick pivot as median of three 

 

 

 Steps 2a and 2c (combinable):  
Pack < and pack > into a second array 

 Fancy parallel prefix to pull this off not shown 

 

 

 

 Step 3: Two recursive sorts in parallel 

 Can sort back into original array (swapping back 
and forth like we did in sequential mergesort) 

 

 

8 1 4 9 0 3 5 2 7 6 

1 4 0 3 2 5 6 8 9 7 
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Parallelize Mergesort? 

Recall mergesort: sequential, not-in-place, 
worst-case O(n log n) 

 

1. Sort left half of array 

2. Sort right half of array 

3. Merge results       

best/expected case 

T(n/2) 

T(n/2) 

O(n) 

Just like quicksort, doing the two recursive 
sorts in parallel changes the recurrence for 
the span to T(n) = O(n) + 1T(n/2) = O(n) 

 Again, parallelism is O(log n) 

 To do better, need to parallelize the merge 

 The trick this time will not use parallel prefix 
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Parallelizing the Merge 

Need to merge two sorted subarrays (may 
not have the same size) 

 

 

Idea: Suppose the larger subarray has n 
elements. Then, in parallel: 

 merge the first n/2 elements of the larger half with 
the "appropriate" elements of the smaller half 

 merge the second n/2 elements of the larger half 
with the remainder of the smaller half 
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Example: Parallelizing the Merge 
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Example: Parallelizing the Merge 
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0 4 6 8 9 1 2 3 5 7 

1. Get median of bigger half: O(1) to compute middle index 

 

 



Example: Parallelizing the Merge 
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0 4 6 8 9 1 2 3 5 7 

1. Get median of bigger half: O(1) to compute middle index 

2. Find how to split the smaller half at the same value:  
O(log n) to do binary search on the sorted small half 

 

 

 



Example: Parallelizing the Merge 
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1. Get median of bigger half: O(1) to compute middle index 

2. Find how to split the smaller half at the same value:  
O(log n) to do binary search on the sorted small half 

3. Two sub-merges conceptually splits output array: O(1) 
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Example: Parallelizing the Merge 
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1. Get median of bigger half: O(1) to compute middle index 

2. Find how to split the smaller half at the same value:  
O(log n) to do binary search on the sorted small half 

3. Two sub-merges conceptually splits output array: O(1) 

4. Do two submerges in parallel 
 

 

 

0 4 6 8 9 1 2 3 5 7 

0 4 1 2 3 5 

merge 

6 8 9 7 

merge 



Example: Parallelizing the Merge 
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0 4 6 8 9 1 2 3 5 7 

0 4 1 2 3 5 

merge 

6 8 9 7 

merge 

0 4 1 2 3 5 6 8 9 7 

0 4 1 2 3 5 9 6 8 7 

merge merge merge 

0 4 1 2 3 5 9 6 8 7 
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merge merge merge 
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Example: Parallelizing the Merge 
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0 4 6 8 9 1 2 3 5 7 

0 4 1 2 3 5 

merge 

6 8 9 7 

merge 

0 4 1 2 3 5 6 8 9 7 

0 4 1 2 3 5 9 6 8 7 

merge merge merge 

0 4 1 2 3 5 9 6 8 7 

0 4 1 2 3 5 9 6 8 7 

merge merge merge 

0 4 1 2 3 5 9 6 8 7 

When we do each merge in parallel: 

 we split the bigger array in half 

 use binary search to split the smaller array 

 And in base case we do the copy 



Parallel Merge Pseudocode 
Merge(arr[], left1, left2, right1, right2, out[], out1, out2 )  

 int leftSize = left2 – left1 

 int rightSize = right2 – right1 

 // Assert: out2 – out1 = leftSize + rightSize  

 // We will assume leftSize > rightSize without loss of generality 
  

 if (leftSize + rightSize < CUTOFF)  

  sequential merge and copy into out[out1..out2] 
  

 int mid = (left2 – left1)/2 

 binarySearch arr[right1..right2] to find j such that 

  arr[j] ≤ arr[mid] ≤ arr[j+1] 
  

 Merge(arr[], left1, mid, right1, j, out[], out1, out1+mid+j)  

 Merge(arr[], mid+1, left2, j+1, right2, out[], out1+mid+j+1, out2)  
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Analysis 
Sequential recurrence for mergesort: 

 T(n) = 2T(n/2) + O(n) which is O(n log n) 
 

Parallel splitting but sequential merge: 

 work: same as sequential 

 span: T(n)=1T(n/2)+O(n) which is O(n) 
 

Parallel merge makes work and span harder to compute 

 Each merge step does an extra O(log n) binary search 

to find how to split the smaller subarray 

 To merge n elements total, we must do two smaller 
merges of possibly different sizes 

 But worst-case split is (1/4)n and (3/4)n 

 Larger array always splits in half 

 Smaller array can go all or none 
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Analysis 

For just a parallel merge of n elements: 
 Span is T(n) = T(3n/4) + O(log n), which is O(log2 n) 

 Work is T(n) = T(3n/4) + T(n/4) + O(log n) which is O(n) 

 Neither bound is immediately obvious, but "trust us" 

 

So for mergesort with parallel merge overall: 
 Span is T(n) = 1T(n/2) + O(log2 n), which is O(log3 n) 

 Work is T(n) = 2T(n/2) + O(n), which is O(n log n) 

 

So parallelism (work / span) is O(n / log2 n) 

 Not quite as good as quicksort’s O(n / log n) 

 But this is a worst-case guarantee and as always is just the 
asymptotic result 
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CONCURRENCY 

Articles of economic exchange within prison systems? 
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Toward Sharing Resources 

We have studied parallel algorithms using fork-join 
with the goal of lowering span via parallel tasks 

 

All of the algorithms so far have had a very simple 
structure to avoid race conditions 

 Each thread has memory only it can access: 
Example: array sub-range 

 Or we used fork and join as a contract for who 

could access certain memory at each moment: 

On fork, "loan" some memory to "forkee" and do 
not access that memory again until after join on 

the "forkee" 
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This is far too limiting 

What if memory accessed by threads is overlapping 
or unpredictable? 

 

What if threads doing independent tasks need access 
to the same resources (as opposed to implementing 
the same algorithm)? 

 

When we started talking about parallelism, we 
mentioned a topic we would talk about later 

 Now is the time to talk about concurrency 
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Concurrent Programming 
Concurrency:  
Correctly and efficiently managing access to shared 
resources from multiple possibly-simultaneous clients 
 

Requires coordination, particularly synchronization, to 
avoid incorrect simultaneous access 

 Blocking via join is not what we want 

 We want to block until another thread is "done with 
what we need" and not the more extreme "until 
completely done executing" 

 

Even correct concurrent applications are usually highly 
non-deterministic:  

 how threads are scheduled affects what each thread 
sees in its different operations 

 non-repeatability complicates testing and debugging 
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Examples Involving Multiple Threads 

Processing different bank-account operations 

 What if 2 threads change the same account at 
the same time? 
 

Using a shared cache (hashtable) of recent files  

 What if 2 threads insert the same file at the 
same time? 
 

Creating a pipeline with a queue for handing 
work to next thread in sequence (a virtual 
assembly line)? 

 What if enqueuer and dequeuer adjust a 
circular array queue at the same time? 
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Why Threads? 

Unlike parallelism, this is not about 
implementing algorithms faster 
 

But threads still have other uses: 

 Code structure for responsiveness 

 Respond to GUI events in one thread 

 Perform an expensive computation in another 

 Processor utilization (mask I/O latency) 

 If 1 thread "goes to disk," do something else  

 Failure isolation 

 Convenient structure if want to interleave tasks 
not want an exception in one to stop the other 
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Sharing, again 

It is common in concurrent programs that: 

 Different threads might access the same resources 
in an unpredictable order or even at about the 
same time 

 Program correctness requires that simultaneous 
access be prevented using synchronization 

 Simultaneous access is rare 

 Makes testing difficult 

 We must be much more disciplined when 
designing/implementing a concurrent program 

 We will discuss common idioms known to work 
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Canonical example: Bank Account 

The following is correct code in a single-
threaded world 
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class BankAccount { 

  private int balance = 0; 

  int  getBalance()      { return balance; } 

  void setBalance(int x) { balance = x; }  

  void withdraw(int amount) { 

    int b = getBalance(); 

    if(amount > b) 

      throw new WithdrawTooLargeException(); 

    setBalance(b – amount); 

  } 

  … // other operations like deposit, etc. 

} 



Interleaving 

Suppose: 

 Thread T1 calls x.withdraw(100) 

 Thread T2 calls y.withdraw(100) 
 

If second call starts before first finishes, we say the 
calls interleave 

 Could happen even with one processor, as a thread can 
be pre-empted for time-slicing 

(e.g., T1 runs 50 ms, T2 runs 50ms, T1 resumes) 
 

If x and y refer to different accounts, no problem: 
"You cook in your kitchen while I cook in mine" 
 

But if x and y alias, possible trouble… 
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Bad Interleaving 
Interleaved withdraw(100) calls on same account 

Assume initial balance == 150 

int b = getBalance(); 

 

 

 

 

if(amount > b) 

  throw new …; 

setBalance(b – amount); 

 

int b = getBalance(); 

if(amount > b) 

  throw new …; 

setBalance(b – amount); 

 

 

 

Thread 1 Thread 2 

T
im

e
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Incorrect Attempt to "Fix" 
Interleaved withdraw(100) calls on same account 

Assume initial balance == 150 

int b = getBalance(); 

 

 

 

 

if(amount > getBalance()) 

  throw new …; 

setBalance(b – amount); 

 

int b = getBalance(); 

if(amount > getBalance()) 

  throw new …; 

setBalance(b – amount); 

 

 

 

Thread 1 Thread 2 

T
im

e
 

This interleaving would work  
and throw an exception 
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Incorrect Attempt to "Fix" 
Interleaved withdraw(100) calls on same account 

Assume initial balance == 150 

int b = getBalance(); 

if(amount > getBalance()) 

  throw new …; 

 

 

 

 

setBalance(b – amount); 

 

 

 

int b = getBalance(); 

if(amount > getBalance()) 

  throw new …; 

setBalance(b – amount); 

 

Thread 1 Thread 2 

T
im

e
 

But this interleaving allows 
the double withdrawal 
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Another Incorrect Attempt to "Fix" 
Interleaved withdraw(100) calls on same account 

Assume initial balance == 150 

if(amount > getBalance()) 

  throw new …; 

 

 

 

 

 

 

setBalance( 

  getBalance() – amount 

); 

 

 

 

if(amount > getBalance()) 

  throw new …; 

setBalance( 

  getBalance() – amount 

); 

 

 

 

Thread 1 Thread 2 

T
im

e
 

No money lost but no 
exception was thrown 
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Incorrect Attempt to "Fix" 
It can be tempting, but is generally wrong, to attempt to "fix" a 
bad interleaving by rearranging or repeating operations 

 

 

 

 

 

 
Only narrows the problem by one statement 

 Imagine a withdrawal is interleaved after computing the 
value of the parameter getBalance()-amount but before 
invocation of the function setBalance 

 

Compiler optimizations may even remove the second call to 
getBalance() since you did not tell it you need to synchronize 

 

void withdraw(int amount) { 

  if(amount > getBalance()) 

    throw new InsufficientFundsException(); 

  // maybe balance changed 

  setBalance(getBalance() – amount); 

} 
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Mutual Exclusion 

The simplest fix is to allow only one thread at a time 
to withdraw from the account  

 Also exclude other simultaneous account operations that 
could potentially result in bad interleavings (e.g., deposits) 

 

Mutual exclusion: One thread doing something with a 
resource means that any other thread must wait until 
the resource is available 

 Define critical sections of code that are mutually exclusive 
 

Programmer must implement critical sections 

 "The compiler" has no idea what interleavings should or 
should not be allowed in your program 

 But you will need language primitives to do this 
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Incorrect Attempt to "Do it Ourselves" 

class BankAccount { 

  private int balance = 0; 

  private boolean busy = false; 

  void withdraw(int amount) { 

    while(busy) { /* "spin-wait" */ } 

    busy = true; 

    int b = getBalance(); 

    if(amount > b) 

      throw new InsufficientFundsException(); 

    setBalance(b – amount); 

    busy = false; 

  } 

  // deposit would spin on same boolean 

} 
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This Just Moves the Problem 

while(busy) { } 

 

busy = true; 

 

int b = getBalance(); 

 

 

 

 

if(amount > b) 

  throw new …; 

setBalance(b – amount); 

 

while(busy) { } 

 

busy = true; 

 

int b = getBalance(); 

if(amount > b) 

  throw new …; 

setBalance(b – amount); 

Thread 1 Thread 2 

T
im

e
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Need Help from the Language 

There are many ways out of this conundrum 
 

One basic solution: Locks 

 Still on a conceptual, ‘Lock’ is not a Java class 
 

We will define Lock as an ADT with operations: 

 new: make a new lock 

 acquire: If lock is "not held", makes it "held"  

 Blocks if this lock is already currently "held" 

 Checking & Setting happen atomically, cannot be 
interrupted (requires hardware and system support) 

 release: makes this lock "not held" 

 if ≥1 threads are blocked, exactly 1 will acquire it 
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Still Incorrect Pseudocode  

class BankAccount { 

  private int balance = 0; 

  private Lock lk = new Lock(); 

  … 

  void withdraw(int amount) { 

   lk.acquire(); /* may block */ 

    int b = getBalance(); 

    if(amount > b) 

      throw new InsufficientFundsException(); 

    setBalance(b – amount); 

    lk.release();  

  } 

  // deposit would also acquire/release lk 

} 
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Some Mistakes 
A lock is a very primitive mechanism but must be used correctly 
to implement critical sections 
 

Incorrect: Forget to release lock, other threads blocked forever 

 Previous slide is wrong because of the exception possibility 

 

 

 

 

 

Incorrect: Use different locks for withdraw and deposit 

 Mutual exclusion works only when using same lock 

 Balance is the shared resource that is being protected 
 

Poor performance: Use same lock for every bank account 

 No simultaneous withdrawals from different accounts 
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if(amount > b) { 
  lk.release(); // hard to remember! 
  throw new WithdrawTooLargeException(); 

} 



Other Operations 
 If withdraw and deposit use same lock, then 

simultaneous method calls are synchronized 

 But what about getBalance and setBalance 

 Assume they are public (may be reasonable) 

 If they do not acquire the same lock, then a race 
between setBalance and withdraw could produce 

a wrong result 

 If they do acquire the same lock, then withdraw 

would block forever because it tries to acquire a 
lock it already has 

… 

   lk.acquire();  

    int b = getBalance(); 

… 
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One Bad Option 
Two versions of setBalance 

 Safe and unsafe versions 

 You use one or the other, 
depending on whether you 
already have the lock 

 

Technically could work   

 Hard to always remember 

 And definitely poor style 

 

Better to modify meaning of 
the Lock ADT to support  
re-entrant locks 

int setBalanceUnsafe(int x) {  

  balance = x;  

} 

 

int setBalanceSafe(int x) { 

  lk.acquire(); 

  balance = x; 

  lk.release(); 

} 

 

void withdraw(int amount) { 

  lk.acquire(); 

  … 

  setBalanceUnsafe(b – amount); 

  lk.release();  

} 
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Re-Entrant Locking 
A re-entrant lock is also known as a recursive lock 

 "Remembers" the thread that currently holds it 

 Stores a count of "how many" times it is held 
 

When lock goes from not-held to held, the count is 0 
 

If the current holder calls acquire: 

 it does not block  

 it increments the count 
 

On release: 

 if the count is > 0, the count is decremented  

 if the count is 0, the lock becomes not-held 
 

withdraw can acquire the lock, and then call setBalance 
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Java’s Re-Entrant Lock 
java.util.concurrent.locks.ReentrantLock 

 Has methods lock() and unlock()  
 

Be sure to guarantee that the lock is always released 

 

 

 

 

 

 

Regardless of what happens in the ‘try’, the finally 
code will execute and release the lock 

myLock.lock(); 

try {  

 // method body  

} finally {  

 myLock.unlock();  

} 
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A Java Convenience: Synchronized 
You can use the synchronized statement as an 
alternative to declaring a ReentrantLock 

 

 

 

1. Evaluates expression to an object 

 Every object "is a lock" in Java (not primitives)  

2. Acquires the lock, blocking if necessary 

 "If you get past the {, you have the lock" 

3. Releases the lock "at the matching }" 

 Release occurs even if control leaves due to a 
throw, return, or whatever 

 So it is impossible to forget to release the lock 

 

synchronized (expression) { 

  statements 

} 
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Version 1: Correct but not "Java Style" 

class BankAccount { 

  private int balance = 0; 

  private Object lk = new Object(); 

  int getBalance()  

    { synchronized (lk) { return balance; } } 

  void setBalance(int x)  

    { synchronized (lk) { balance = x; } }  

  void withdraw(int amount) { 

   synchronized (lk) { 

      int b = getBalance(); 

      if(amount > b) 

        throw … 

      setBalance(b – amount); 

    }  

  } 

  // deposit would also use synchronized(lk) 

} 

August 6, 2012 CSE 332 Data Abstractions, Summer 2012 52 



Improving the Java 

As written, the lock is private 

 Might seem like a good idea 

 But also prevents code in other classes from 
writing operations that synchronize with the 
account operations 
 

Example motivations with our bank record? 

 Plenty! 
 

It is more common to synchronize on this 

 It is also convenient 

 No need to declare an extra object 
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Version 2: Something Tastes Bitter 
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class BankAccount { 

  private int balance = 0; 

  int getBalance()  

    { synchronized (this){ return balance; } } 

  void setBalance(int x)  

    { synchronized (this){ balance = x; } }  

  void withdraw(int amount) { 

   synchronized (this) { 

     int b = getBalance(); 

      if(amount > b) 

        throw … 

      setBalance(b – amount); 

    }  

  } 

  // deposit would also use synchronized(this) 

} 



Syntactic Sugar 

Java provides a concise and standard way to say the 
same thing: 
 

Applying the synchronized keyword to a method 

declaration means the entire method body is 
surrounded by  
 

synchronized(this){ 

 … 

} 
 

Next version means exactly the same thing, but is 
more concise and more the "style of Java" 
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Version 3: Final Version 

class BankAccount { 

  private int balance = 0; 

  synchronized int getBalance()  

    { return balance; }  

  synchronized void setBalance(int x)  

    { balance = x; }  

   synchronized void withdraw(int amount) { 

    int b = getBalance(); 

     if(amount > b) 

       throw … 

     setBalance(b – amount); 

  } 

  // deposit would also use synchronized 

} 
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MORE ON RACE 
CONDITIONS 

Some horses like wet tracks or dry tracks or muddy tracks… 
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Races 
A race condition occurs when the computation result depends on 
scheduling (how threads are interleaved on ≥1 processors) 

 Only occurs  if T1 and T2 are scheduled in a particular way 

 As programmers, we cannot control the scheduling of threads 

 Program correctness must be independent of scheduling 
 

Race conditions are bugs that exist only due to concurrency  

 No interleaved scheduling with 1 thread 
 

Typically, the problem is some intermediate state that "messes 
up" a concurrent thread that "sees" that state 
 

We will distinguish between data races and bad interleavings, 
both of which are types of race condition bugs 
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Data Races 

A data race is a type of race condition that can 
happen in two ways: 

 Two threads potentially write a variable at the same time 

 One thread potentially write a variable while another reads  
 

Not a race: simultaneous reads provide no errors 
 

Potentially is important 

 We claim that code itself has a data race independent of any 
particular actual execution  
 

Data races are bad, but they are not the only form of 
race conditions 

 We can have a race, and bad behavior, without any data race 
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Stack Example 
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class Stack<E> { 

  private E[] array = (E[])new Object[SIZE]; 

  int index = -1; 

  synchronized boolean isEmpty() {  

    return index==-1;  

  } 

  synchronized void push(E val) { 

   array[++index] = val; 

  } 

  synchronized E pop() { 

   if(isEmpty()) 

      throw new StackEmptyException();  

   return array[index--]; 

  } 

} 



A Race Condition: But Not a Data Race 

In a sequential world, 
this code is of iffy, 
ugly, and questionable 
style, but correct 

 

The "algorithm" is the 
only way to write a 
peek helper method if 

this interface is all you 
have to work with 

class Stack<E> { 

  … 

  synchronized boolean isEmpty() {…} 

  synchronized void push(E val) {…} 

  synchronized E pop(E val) {…} 

 

E peek() { 

  E ans = pop(); 

  push(ans); 

  return ans; 

} 
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Note that peek() throws 
the StackEmpty exception 
via its call to pop() 



peek in a Concurrent Context 
peek has no overall effect on the shared data 

 It is a "reader" not a "writer" 

 State should be the same after it executes as before 

 

This implementation creates an inconsistent 
intermediate state 

 Calls to push and pop are synchronized,so there are no 

data races on the underlying array 

 But there is still a race condition 

 This intermediate state  
should not be exposed 

 Leads to several  
bad interleavings 

E peek() { 

     E ans = pop(); 

     push(ans); 

     return ans; 

} 
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Example 1: peek and isEmpty 

Property we want:  
If there has been a push (and no pop),  
then isEmpty should return false 

 

With peek as written, property can be 

violated – how? 

E ans = pop(); 

 

push(ans); 

 

return ans; 

push(x) 

boolean b = isEmpty() 

T
im

e
 

Thread 2 Thread 1 (peek) 

August 6, 2012 CSE 332 Data Abstractions, Summer 2012 63 



Example 1: peek and isEmpty 

Property we want:  
If there has been a push (and no pop),  
then isEmpty should return false 

 

With peek as written, property can be 

violated – how? 

E ans = pop(); 

 

push(ans); 

 

return ans; 

push(x) 

boolean b = isEmpty() 

T
im

e
 

Thread 2 Thread 1 (peek) 
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Race causes error with: 
  T2: push(x) 
  T1: pop() 
  T2: isEmpty() 



Example 2: peek and push 

Property we want:  
Values are returned from pop in LIFO order 
 

With peek as written, property can be 

violated – how? 

E ans = pop(); 

 

push(ans); 

 

return ans; 

T
im

e
 

Thread 2 Thread 1 (peek) 
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push(x) 

push(y) 

E e = pop() 



Property we want:  
Values are returned from pop in LIFO order 
 

With peek as written, property can be 

violated – how? 

Example 2: peek and push 

E ans = pop(); 

 

push(ans); 

 

return ans; 

 

T
im

e
 

Thread 2 Thread 1 (peek) 
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push(x) 

push(y) 

E e = pop() 

Race causes error with: 
  T2: push(x) 
  T1: pop() 
  T2: push(x) 
  T1: push(x) 



Example 3: peek and peek 

Property we want:  
peek does not throw an exception unless 
the stack is empty 
 

With peek as written, property can be 

violated – how? 

E ans = pop(); 

 

push(ans); 

 

return ans; 

T
im

e
 

Thread 2 Thread 1 (peek) 
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E ans = pop(); 

 

push(ans); 

 

return ans; 



The Fix 
peek needs synchronization to disallow interleavings 

 The key is to make a larger critical section 

 This protects the intermediate state of peek 

 Use re-entrant locks; will allow calls to push and pop 

 Can be done in stack (left) or an external class (right) 
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class Stack<E> { 

  … 

  synchronized E peek(){ 

     E ans = pop(); 

     push(ans); 

     return ans; 

  } 

} 

 

class C { 

  <E> E myPeek(Stack<E> s){ 

    synchronized (s) { 

      E ans = s.pop(); 

      s.push(ans); 

      return ans; 

    } 

  } 

} 



An Incorrect "Fix" 

So far we have focused on problems created when 
peek performs writes that lead to an incorrect 

intermediate state 

 

A tempting but incorrect perspective 

 If an implementation of peek does not write anything, 

then maybe we can skip the synchronization? 

 

Does not work due to data races with push and pop 

 Same issue applies with other readers, such as isEmpty 
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Another Incorrect Example 

class Stack<E> { 

  private E[] array = (E[])new Object[SIZE]; 

  int index = -1; 

  boolean isEmpty() { // unsynchronized: wrong?! 

    return index==-1;  

  } 

  synchronized void push(E val) { 

   array[++index] = val; 

  } 

  synchronized E pop() {  

   return array[index--]; 

  } 

  E peek() { // unsynchronized: wrong! 

    return array[index]; 

  } 

} 
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Why Wrong? 
It looks like isEmpty and peek can "get away with 
this" because push and pop adjust the stacl's state 

using "just one tiny step" 
 

But this code is still wrong and depends on  
language-implementation details you cannot assume 

 Even "tiny steps" may require multiple steps in 
implementation: array[++index] = val probably 

takes at least two steps 

 Code has a data race, allowing very strange 
behavior  

 

Do not introduce a data race, even if every 
interleaving you can think of is correct 
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Getting It Right 

Avoiding race conditions on shared resources 
is difficult 

 Decades of bugs have led to some conventional 
wisdom and general techniques known to work 

 

We will discuss some key ideas and trade-offs 

 More available in the suggested additional readings 

 None of this is specific to Java or a particular book 

 May be hard to appreciate in beginning 

 Come back to these guidelines over the years 

 Do not try to be fancy 
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GOING FURTHER WITH 
EXCLUSION AND LOCKING 

Yale University is the best place to study locks… 
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Three Choices for Memory 

For every memory location in your program 
(e.g., object field), you must obey at least 
one of the following: 

1. Thread-local: Do not use the location in >1 thread 

2. Immutable: Never write to the memory location 

3. Synchronized: Control access via synchronization  

all memory 

needs synchronization 
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immutable 
memory 

thread-local 
memory 



Thread-Local 

Whenever possible, do not share resources! 

 Easier for each thread to have its own thread-local copy of a 
resource instead of one with shared updates 

 Correct only if threads do not communicate through resource 

 In other words, multiple copies are correct approach 

 Example: Random objects 

 Note: Because each call-stack is thread-local, never need to 
synchronize on local variables 

 

In typical concurrent programs, the vast majority of 
objects should be thread-local and shared-memory 
usage should be minimized 
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Immutable 

Whenever possible, do not update objects 

 Make new objects instead 
 

One of the key tenets of functional programming 
(see CSE 341 Programming Languages) 

 Generally helpful to avoid side-effects 

 Much more helpful in a concurrent setting 
 

If a location is only ever read, never written, no 
synchronization needed 

 Simultaneous reads are not races (not a problem!) 
 

In practice, programmers usually over-use mutation 
so you should do your best to minimize it 
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Everything Else:  Keep it Synchronized 

After minimizing the amount of memory that is both 
(1) thread-shared and (2) mutable, we need to follow 
guidelines for using locks to keep that data consistent 
 

Guideline #0: No data races 

 Never allow two threads to read/write or 
write/write the same location at the same time 

 

Necessary:  

 In Java or C, a program with a data race is almost 
always wrong 

 

But Not Sufficient:  

 Our peek example had no data races 
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Consistent Locking 

Guideline #1: Consistent Locking 

For each location that requires synchronization, we 
should have a lock that is always held when reading 
or writing the location 

 We say the lock guards the location 

 The same lock can guard multiple locations (and often should)  

 Clearly document the guard for each location 

 In Java, the guard is often the object containing the location 

 this inside object methods 

 Also common to guard a larger structure with one lock to 
ensure mutual exclusion on the structure 
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Consistent Locking 
The mapping from locations to guarding locks is conceptual, and 
must be enforced by you as the programmer 

 It partitions the shared-&-mutable locations into "which lock" 

 

 

 

 
Consistent locking is: 
 

Not Sufficient:  
It prevents all data races, but still allows bad interleavings 

 Our peek example used consistent locking, but had exposed 
intermediate states and bad interleavings 

 

Not Necessary:  

 Can dynamically change the locking protocol 
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Beyond Consistent Locking 
Consistent locking is an excellent guideline 

 A "default assumption" about program design 

 You will save yourself many a headache using this guideline 

 

But it is not required for correctness:  
Different program phases can use different locking techniques 

 Provided all threads coordinate moving to the next phase 

 

Example from Project 3 Version 5: 

 A shared grid being updated, so use a lock for each entry 

 But after the grid is filled out, all threads except 1 terminate 
thus making synchronization no longer necessary (i.e., now 
only thread local) 

 And later the grid is only read in response to queries thereby 
making synchronization doubly unnecessary (i.e., immutable) 
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LOCK GRANULARITY 

Whole-grain locks are better than overly processed locks… 
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Lock Granularity 
Coarse-Grained: Fewer locks (more objects per lock) 

 Example: One lock for entire data structure (e.g., array) 

 Example: One lock for all bank accounts 

 

 

 

Fine-Grained: More locks (fewer objects per lock) 

 Example: One lock per data element (e.g., array index) 

 Example: One lock per bank account 

 

 

 
"Coarse-grained vs. fine-grained" is really a continuum 
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… 

… 



Trade-Offs 

Coarse-grained advantages 

 Simpler to implement 

 Faster/easier to implement operations that access multiple 
locations (because all guarded by the same lock) 

 Easier to implement modifications of data-structure shape 

 

Fine-grained advantages 

 More simultaneous access (improves performance  
when coarse-grained would lead to unnecessary blocking) 

 

Guideline #2: Lock Granularity 

Start with coarse-grained (simpler), move to fine-grained 
(performance) only if contention on coarse locks is an issue.  
Alas, often leads to bugs. 
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Example: Separate Chaining Hashtable 

Coarse-grained:  One lock for entire hashtable 

Fine-grained:  One lock for each bucket 

 

Which supports more concurrency for insert and lookup? 

Fine-grained; allows simultaneous access to different 
buckets 

 

Which makes implementing resize easier? 

Coarse-grained; just grab one lock and proceed 

 

Maintaining a numElements field will destroy the potential 

benefits of using separate locks for each bucket, why? 

Updating each insert without a coarse lock would be a 
data race 
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Critical-Section Granularity 

A second, orthogonal granularity issue is the size of 
critical-sections 

 How much work should we do while holding lock(s) 
 

If critical sections run for too long: 

 Performance loss as other threads are blocked 
 

If critical sections are too short: 

 Bugs likely as you broke up something where other 
threads shouldn't be able to see intermediate state 
 

Guideline #3: Granularity 
Do not do expensive computations or I/O in critical 
sections, but also do not introduce race conditions 
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Example: Critical-Section Granularity 

Suppose we want to change the value for a key 
in a hashtable without removing it from the table 

 Assume lock guards the whole table 
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synchronized(lock) { 

  v1 = table.lookup(k); 

  v2 = expensive(v1); 

  table.remove(k); 

  table.insert(k,v2); 

} 

Papa Bear’s critical 
section was too long 
 
Table is  locked during 
the expensive call 



Example: Critical-Section Granularity 

Suppose we want to change the value for a key 
in a hashtable without removing it from the table 

 Assume lock guards the whole table 
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synchronized(lock) { 

  v1 = table.lookup(k); 

} 

v2 = expensive(v1); 

synchronized(lock) { 

  table.remove(k); 

  table.insert(k,v2); 

} 

Mama Bear’s critical section 
was too short 
 
If another thread updated 
the entry, we will lose the 
intervening update 



Example: Critical-Section Granularity 

Suppose we want to change the value for a key 
in a hashtable without removing it from the table 

 Assume lock guards the whole table 
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done = false; 

while(!done) { 

  synchronized(lock) { 

    v1 = table.lookup(k); 

  }  

  v2 = expensive(v1); 

  synchronized(lock) { 

    if(table.lookup(k)==v1) { 

      done = true; 

      table.remove(k); 

      table.insert(k,v2); 

}}} 

Baby Bear’s critical 
section was just right 
 
if another update 
occurred, we will try 
our update again 



Atomicity 

An operation is atomic if no other thread can see it 
partly executed 

 Atomic as in "appears indivisible" 

 We typically want ADT operations atomic, even to other 
threads running operations on the same ADT 

 

Guideline #4: Atomicity 

 Think in terms of what operations need to be atomic 

 Make critical sections just long enough to preserve atomicity 

 Then design locking protocol to implement critical sections 
 

In other words:  

Think about atomicity first and locks second 
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Do Not Roll Your Own 

In real life, you rarely write your own data structures 

 Excellent implementations provided in standard libraries 

 Point of CSE 332 is to understand the key trade-offs, 
abstractions, and analysis of such implementations 

 

Especially true for concurrent data structures 

 Far too difficult to provide fine-grained synchronization 
without race conditions 

 Standard thread-safe libraries like ConcurrentHashMap are 

written by world experts and been extensively vetted 

 

Guideline #5: Libraries 

Use built-in libraries whenever they meet your needs 
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Motivating Memory-Model Issues 

Tricky and surprisingly wrong unsynchronized 
concurrent code 

First understand why it looks 
like the assertion cannot fail: 
 

Easy case:  
A call to g ends before any call 
to f starts 
 

Easy case:  
At least one call to f completes 
before call to g starts 
 

If calls to f and g interleave… 
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class C { 

  private int x = 0; 

  private int y = 0; 
 

  void f() { 

    x = 1; 

    y = 1; 

  } 
 

  void g() { 

    int a = y; 

    int b = x; 

    assert(b >= a); 

  }    

} 



Interleavings Are Not Enough 
There is no interleaving of f and g such that the 

assertion fails 

 

Proof #1:  
Exhaustively consider all possible orderings of access 
to shared memory (there are 6) 
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Interleavings are Not Enough 

Proof #2:  
Exhaustively consider all possible orderings of access 
to shared memory (there are 6) 
 

If !(b>=a), then a==1 and b==0.   
But if a==1, then y=1 happened before a=y.   

Because programs execute in order: 
 a=y happened before b=x  
 and x=1 happened before y=1 
So by transitivity, b==1.   

Contradiction. 
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x = 1; 

 

y = 1; 

int a = y; 

 

int b = x; 

 

assert(b >= a); 

Thread 1: f Thread 2: g 



Wrong 

However, the code has a data race 

 Unsynchronized read/write or write/write of the 
memory same location 

 

If code has data races, you cannot reason 
about it with interleavings 

 This is simply the rules of Java (and C, C++, 
C#, other languages) 

 Otherwise we would slow down all programs 
just to "help" those with data races, and that 
would not be a good engineering trade-off 

 So the assertion can fail 
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Why 

For performance reasons, the compiler and the 
hardware will often reorder memory operations 

 Take a compiler or computer architecture course to learn 
more as to why this is good thing 

 

 

 

 

 

Of course, compilers cannot just reorder anything 
they want without careful consideration  

 Each thread computes things by executing code in order 

 Consider: x=17; y=x; 
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x = 1; 

 

y = 1; 

int a = y; 

 

int b = x; 

 

assert(b >= a); 

Thread 1: f Thread 2: g 



The Grand Compromise 
The compiler/hardware will NEVER: 

 Perform a memory reordering that affects the result of a 
single-threaded program 

 Perform a memory reordering that affects the result of a 
data-race-free multi-threaded program 

 

So:  If no interleaving of your program has a data race,  
 then you can forget about all this reordering nonsense:  
 the result will be equivalent to some interleaving 

 

The Big Picture: 

 Your job is to avoid data races 

 The compiler/hardware's job is to give illusion of interleaving 
if you do your job right 
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Fixing Our Example 

Naturally, we can use synchronization to avoid data 
races and then, indeed, the assertion cannot fail 
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class C { 

  private int x = 0; 

  private int y = 0; 

  void f() { 

    synchronized(this) { x = 1; } 

    synchronized(this) { y = 1; } 

  } 

  void g() { 

    int a, b; 

    synchronized(this) { a = y; } 

    synchronized(this) { b = x; } 

    assert(b >= a); 

  }    

} 



A Second Fix:  Stay Away from This 
Java has volatile fields: accesses do not count as data races  

 But you cannot read-update-write 

 

 

 

 

 

 
 

 

Implementation Details 

 Slower than regular fields but faster than locks 

 Really for experts: avoid them; use standard libraries instead 

 And why do you need code like this anyway? 
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class C { 

  private volatile int x = 0; 

  private volatile int y = 0; 

  void f() { 

    x = 1; y = 1; 

  } 

  void g() { 

    int a = y; int b = x; 

    assert(b >= a); 

  }    

} 



Code That is Wrong 
Here is a more realistic example of code that is wrong 

 No guarantee Thread 2 will ever stop (due to data race) 

 But honestly it will "likely work in practice" 
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class C { 

  boolean stop = false; 
 

  void f() { 

    while(!stop) { 

      // draw a monster 

    } 

  } 
 

  void g() { 

    stop = didUserQuit(); 

  }    

} 

Thread 1:  f() 

Thread 2:  g() 



DEADLOCK 

Not nearly as silly as Deathlok from Marvel comics… 
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Motivating Deadlock Issues 

Consider the following method for transfering money 
between bank accounts  

 

 

 

 

 
 

 

 
During call to a.deposit, the thread holds two locks  

 Let's investigate when this may be a problem 
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class BankAccount { 

  … 

  synchronized void withdraw(int amt) {…} 

  synchronized void deposit(int amt) {…} 

  synchronized void transferTo(int amt,   

                               BankAccount a) { 

    this.withdraw(amt); 

    a.deposit(amt); 

  }   

} 



The Deadlock 

Suppose x and y are fields holding accounts 
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acquire lock for x 

do withdraw from x 

 

 

 

 

block on lock for y 

 

 

acquire lock for y 

do withdraw from y 

 

block on lock for x 

 

Thread 1:  
x.transferTo(1,y) 

T
im

e
 

Thread 2:  
y.transferTo(1,x) 



The Dining Philosophers 

Five philosophers go out to dinner 
together at an Italian restaurant 

They sit at a round table; one  
fork per plate setting 

For etiquette reasons, the 
philosophers need two forks  
to eat spaghetti properly 

When the spaghetti comes,  
each philosopher proceeds to  
grab their right fork, then  
their left fork 

‘Locking' for each fork results in a deadlock 
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Deadlock 

A deadlock occurs when there are threads T1, …, Tn 
such that: 

 For i=1 to n-1, Ti is waiting for at least one 
resource held by Ti+1 

 Tn is waiting for a resource held by T1 

 

In other words, there is a cycle of waiting 

 More formally, a graph of dependencies is cyclic  

 

Deadlock avoidance in programming amounts to 
techniques to ensure a cycle can never arise 
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Back to Our Example 

Options for deadlock-proof transfer: 
 

1. Make a smaller critical section:  
transferTo not synchronized 

 Exposes intermediate state after withdraw before deposit 

 May be okay, but exposes wrong total amount to bank 
 

2. Coarsen lock granularity:  
One lock for all accounts allowing transfers between them 

 Works, but sacrifices concurrent deposits/withdrawals 
 

3. Give every bank-account a unique number and always 
acquire locks in the same order 

 Entire program should obey this order to avoid cycles 

 Code acquiring only one lock can ignore the order 
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Ordering Locks 
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class BankAccount { 

  … 

  private int acctNumber; // must be unique 

  void transferTo(int amt, BankAccount a) { 

    if(this.acctNumber < a.acctNumber) 

       synchronized(this) { 

       synchronized(a) { 

          this.withdraw(amt); 

          a.deposit(amt); 

       }} 

    else 

       synchronized(a) { 

       synchronized(this) { 

          this.withdraw(amt); 

          a.deposit(amt); 

       }} 

  } 

} 



StringBuffer Example 

From the Java standard library 
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class StringBuffer { 

  private int count; 

  private char[] value; 

  … 

  synchronized append(StringBuffer sb) { 

    int len = sb.length(); 

    if(this.count + len > this.value.length) 

      this.expand(…); 

    sb.getChars(0,len,this.value,this.count); 

 … 
} 

  synchronized getChars(int x, int, y,  

                        char[] a, int z) { 

    "copy this.value[x..y] into a starting at z" 

  } 

} 



Two Problems 
Problem #1:  

Lock for sb not held between calls to sb.length and sb.getChars  

 So sb could get longer 

 Would cause append to throw an ArrayBoundsException 
 

Problem #2:  

Deadlock potential if two threads try to append in opposite 

directions, identical to the bank-account first example 
 

Not easy to fix both problems without extra copying: 

 Do not want unique ids on every StringBuffer 

 Do not want one lock for all StringBuffer objects 
 

Actual Java library:  

Fixed neither (left code as is; changed documentation)  

 Up to clients to avoid such situations with their own protocols 
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Perspective 

Code like account-transfer and string-buffer append  
are difficult to deal with for deadlock 

 

Easier case: different types of objects  

 Can establish and document a fixed order among types 

 Example: "When moving an item from the hashtable to 
the work queue, never try to acquire the queue lock 
while holding the hashtable lock" 

 

Easier case: objects are in an acyclic structure 

 Can use the data structure to determine a fixed order 

 Example: "If holding a tree node’s lock, do not acquire 
other tree nodes’ locks unless they are children" 
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