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Where We Are 

Last time, we introduced fork-join parallelism 

 Separate programming threads running at the 
same time due to presence of multiple cores 

 Threads can fork off into other threads 

 Said threads share memory  

 Threads join back together 

 

We then discussed two ways of implementing 
such parallelism in Java: 

 The Java Thread Library 

 The ForkJoin Framework 
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ENOUGH IMPLEMENTATION: 
ANALYZING PARALLEL CODE 

Ah yes… the comfort of mathematics… 
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Key Concepts: Work and Span 

Analyzing parallel algorithms requires considering the 
full range of processors available 

 We parameterize this by letting TP be the running time if P 
processors are available 

 We then calculate two extremes: work and span 
 

Work: T1  How long using only 1 processor  

 Just "sequentialize" the recursive forking 
 

Span: T∞   How long using infinity processors 

 The longest dependence-chain 

 Example: O(log n) for summing an array  

 Notice that having > n/2 processors is no additional help 
(a processor adds 2 items, so only n/2 needed) 

 Also called "critical path length" or "computational depth" 
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The DAG 

A program execution using fork and join can be 

seen as a DAG 

 Nodes: Pieces of work  

 Edges: Source must finish before destination starts 
 

A fork "ends a node" and makes 
two outgoing edges 

 New thread 

 Continuation of current thread 
 

A join "ends a node" and makes a  
node with two incoming edges 

 Node just ended 

 Last node of thread joined on 
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Our Simple Examples 
fork and join are very flexible, but divide-and-conquer 

use them in a very basic way: 

 A tree on top of an upside-down tree 
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What Else Looks Like This? 

Summing an array went from O(n) sequential to 
O(log n) parallel (assuming a lot of processors and 

very large n) 

 

 

 

 

 
 

 

Anything that can use results from two halves and 
merge them in O(1) time has the same properties 
and exponential speed-up (in theory) 
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Examples 

 Maximum or minimum element 
 

 Is there an element satisfying some property (e.g., 
is there a 17)? 
 

 Left-most element satisfying some property (e.g., 
first 17) 

 What should the recursive tasks return? 

 How should we merge the results? 
 

 Corners of a rectangle containing all points (a 
"bounding box") 
 

 Counts (e.g., # of strings that start with a vowel) 

 This is just summing with a different base case 
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More Interesting DAGs? 

Of course, the DAGs are not always so simple 
(and neither are the related parallel problems) 

 

Example:  

 Suppose combining two results might be expensive 
enough that we want to parallelize each one 

 Then each node in the inverted tree on the previous 
slide would itself expand into another set of nodes 
for that parallel computation 
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Reductions 

Such computations of this simple form are common 
enough to have a name: reductions (or reduces?) 
 

Produce single answer from collection via an 
associative operator 

 Examples: max, count, leftmost, rightmost, sum, … 

 Non-example: median 
 

Recursive results don’t have to be single numbers or 
strings and can be arrays or objects with fields 

 Example: Histogram of test results  
 

But some things are inherently sequential 

 How we process arr[i] may depend entirely on 
the result of processing arr[i-1] 
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Maps and Data Parallelism 

A map operates on each element of a collection 
independently to create a new collection of the 
same size 

 No combining results 

 For arrays, this is so trivial some hardware has 
direct support (often in graphics cards) 

 

Canonical example: Vector addition 
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int[] vector_add(int[] arr1, int[] arr2){ 
  assert (arr1.length == arr2.length); 
  result = new int[arr1.length]; 
  FORALL(i=0; i < arr1.length; i++) { 
    result[i] = arr1[i] + arr2[i]; 
  } 
  return result; 
} 



Maps in ForkJoin Framework 
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class VecAdd extends RecursiveAction { 
  int lo; int hi; int[] res; int[] arr1; int[] arr2;    
  VecAdd(int l,int h,int[] r,int[] a1,int[] a2){ … } 
  protected void compute(){ 
    if(hi – lo < SEQUENTIAL_CUTOFF) { 
 for(int i=lo; i < hi; i++) 
        res[i] = arr1[i] + arr2[i]; 
    } else { 
      int mid = (hi+lo)/2; 
      VecAdd left = new VecAdd(lo,mid,res,arr1,arr2); 
      VecAdd right= new VecAdd(mid,hi,res,arr1,arr2);    
      left.fork(); 
      right.compute(); 
      left.join(); 
    } 
  } 
} 
 

static final ForkJoinPool fjPool = new ForkJoinPool(); 
 

int[] add(int[] arr1, int[] arr2){ 
  assert (arr1.length == arr2.length); 
  int[] ans = new int[arr1.length]; 
  fjPool.invoke(new VecAdd(0,arr.length,ans,arr1,arr2); 
  return ans; 
} 



Maps and Reductions 

Maps and reductions are the "workhorses" of 
parallel programming 
 By far the two most important and common patterns 

 We will discuss two more advanced patterns later 

 

We often use maps and reductions to 
describe parallel algorithms 
 We will aim to learn to recognize when an algorithm can 

be written in terms of maps and reductions 

 Programming them then becomes "trivial" with a little 
practice (like how for-loops  are second-nature to you) 
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Digression: MapReduce on Clusters 

You may have heard of Google’s "map/reduce" 

 Or the open-source version Hadoop 
 

Perform maps/reduces on data using many machines 

 The system takes care of distributing the data and managing 
fault tolerance 

 You just write code to map one element and reduce elements 
to a combined result 

 

Separates how to do recursive divide-and-conquer 
from what computation to perform 

 Old idea in higher-order functional programming transferred 
to large-scale distributed computing 

 Complementary approach to database declarative queries 
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Maps and Reductions on Trees 

Work just fine on balanced trees 

 Divide-and-conquer each child 

 Example:  
Finding the minimum element in an unsorted but balanced 
binary tree takes O(log n) time given enough processors 

 

How to do you implement the sequential cut-off? 

 Each node stores number-of-descendants (easy to maintain) 

 Or approximate it (e.g., AVL tree height) 
 

Parallelism also correct for unbalanced trees but you 
obviously do not get much speed-up 
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Linked Lists 

Can you parallelize maps or reduces over linked lists? 

 Example: Increment all elements of a linked list 

 Example: Sum all elements of a linked list 

 

 

 

 

Nope. Once again, data structures matter! 
 

For parallelism, balanced trees generally better than 
lists so that we can get to all the data exponentially 
faster O(log n) vs. O(n) 

 Trees have the same flexibility as lists compared to arrays 
(i.e., no shifting for insert or remove) 
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Analyzing algorithms 

Like all algorithms, parallel algorithms should be: 

 Correct  

 Efficient 
 

For our algorithms so far, their correctness is 
"obvious" so we’ll focus on efficiency 

 Want asymptotic bounds 

 Want to analyze the algorithm without regard to a 
specific number of processors 

 The key "magic" of the ForkJoin Framework is getting 
expected run-time performance asymptotically optimal 
for the available number of processors 

 Ergo we analyze algorithms assuming this guarantee 
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Connecting to Performance 
Recall: TP = run time if P processors are available 
 

We can also think of this in terms of the program's DAG 
 

Work = T1 = sum of run-time of all nodes in the DAG 

 Note: costs are on the nodes not the edges 

 That lonely processor does everything 

 Any topological sort is a legal execution 

 O(n) for simple maps and reductions 
 

Span = T∞ = run-time of most-expensive path in  DAG 

 Note: costs are on the nodes not the edges 

 Our infinite army can do everything that is ready to be 
done but still has to wait for earlier results 

 O(log n) for simple maps and reductions 
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Some More Terms 
Speed-up on P processors: T1 / TP   

 

Perfect linear speed-up: If speed-up is P as we vary P  

 Means we get full benefit for each additional processor:  
as in doubling P halves running time 

 Usually our goal 

 Hard to get (sometimes impossible) in practice 
 

Parallelism is the maximum possible speed-up: T1/T∞ 

 At some point, adding processors won’t help 

 What that point is depends on the span 
 

Parallel algorithms is about decreasing span 
without increasing work too much 
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Optimal TP: Thanks ForkJoin library 
So we know T1 and T∞ but we want TP  (e.g., P=4) 
 

Ignoring memory-hierarchy issues (caching), TP cannot 

 Less than T1 / P     why not? 

 Less than T∞         why not? 
 

So an asymptotically optimal execution would be: 

TP  =  O((T1 / P) + T∞) 

First term dominates for small P, second for large P 
 

The ForkJoin Framework gives an expected-time 
guarantee of asymptotically optimal!  

 Expected time because it flips coins when scheduling 

 How? For an advanced course (few need to know) 

 Guarantee requires a few assumptions about your code… 
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Division of Responsibility 

Our job as ForkJoin Framework users: 

 Pick a good parallel algorithm and implement it 

 Its execution creates a DAG of things to do 

 Make all the nodes small(ish) and approximately 
equal amount of work 

 

The framework-writer’s job: 

 Assign work to available processors to avoid idling 

 Keep constant factors low 

 Give the expected-time optimal guarantee 
assuming framework-user did his/her job 

TP  =  O((T1 / P) + T∞) 
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Examples: TP  =  O((T1 / P) + T∞) 

Algorithms seen so far (e.g., sum an array): 

If T1 = O(n) and T∞= O(log n) 

 TP  =  O(n/P + log n) 
 

Suppose instead: 

If T1 = O(n2) and T∞= O(n) 

 TP  =  O(n2/P + n) 
 

Of course, these expectations ignore any 
overhead or memory issues 
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AMDAHL’S LAW 

Things are going so smoothly…  

Parallelism is awesome… 

Hello stranger, what's your name? 

Murphy? Oh @!♪%★$☹*!!! 
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Amdahl’s Law (mostly bad news) 

In practice, much of our programming 
typically has parts that parallelize well 

 Maps/reductions over arrays and trees  
 

And also parts that don’t parallelize at all 

 Reading a linked list 

 Getting/loading input  

 Doing computations based on previous step 
 

To understand the implications, consider this: 

"Nine women cannot make a baby in one month" 
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Amdahl’s Law (mostly bad news) 

Let work (time to run on 1 processor) be 1 unit time 
 

If S is the portion of execution that cannot be 
parallelized, then we can define T1 as: 

    T1 = S + (1-S) = 1 
 

If we get perfect linear speedup on the parallel 
portion, then we can define TP as: 

TP = S + (1-S)/P 
 

Thus,  the overall speedup with P processors is 
(Amdahl’s Law): 

T1 / TP  = 1 / (S + (1-S)/P)   
 

And the parallelism (infinite processors) is: 

T1 / T∞  = 1 / S 

August 1, 2012 CSE 332 Data Abstractions, Summer 2012 25 



Why this is such bad news 

Amdahl’s Law: T1 / TP  = 1 / (S + (1-S)/P)     

  T1 / T∞  = 1 / S 
 

Suppose 33% of a program is sequential 

 Then a billion processors won’t give a speedup over 3 
 

Suppose you miss the good old days (1980-2005) where 
12 years or so was long enough to get 100x speedup 

 Now suppose in 12 years, clock speed is the same but 
you get 256 processors instead of just 1 

 For the 256 cores to gain ≥100x speedup, we need 

 100  1 / (S + (1-S)/256) 

 Which means S  .0061 or 99.4% of the algorithm must 
be perfectly parallelizable!! 
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A Plot You Have To See 
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A Plot You Have To See (Zoomed In) 
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All is not lost 

Amdahl’s Law is a bummer! 

 Doesn’t mean additional processors are worthless!! 
 

We can always search for new parallel algorithms 

 We will see that some tasks may seem inherently 
sequential but can be parallelized 

 

We can also change the problems we’re trying to 
solve or pursue new problems 

 Example: Video games/CGI use parallelism   

 But not for rendering 10-year-old graphics faster 

 They are rendering more beautiful(?) monsters 
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A Final Word on Moore and Amdahl 

Although we call both of their work laws, they 
are very different entities 
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Very different but incredibly important in the 
design of computer systems 

Amdahl’s Law is a mathematical theorem 

 Diminishing returns of adding more processors 

Moore’s "Law" is an observation about the 
progress of the semiconductor industry: 

 Transistor density doubles every ≈18 months 



BEING CLEVER:  
PARALLEL PREFIX 

If we were really clever, we wouldn't constantly say 
parallel because after all we are discussing parallelism 
so it should be rather obvious but this comment is 
getting too long and stopped being clever ages ago… 
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Moving Forward 

Done: 

 "Simple" parallelism for counting, summing, finding 

 Analysis of running time and implications of Amdahl’s Law 

 

Coming up: 

 Clever ways to parallelize more than is intuitively possible 

 Parallel prefix:  

 A "key trick" typically underlying surprising parallelization 

 Enables other things like packs 

 Parallel sorting: mergesort and quicksort (not in-place) 

 Easy to get a little parallelism 

 With cleverness can get a lot of parallelism 
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The Prefix-Sum Problem 
Given int[] input, produce int[] output such that: 
 output[i]=input[0]+input[1]+…+input[i] 
 

A sequential solution is a typical CS1 exam problem: 

 

 

 

 

 

 

int[] prefix_sum(int[] input){ 
  int[] output = new int[input.length]; 
  output[0] = input[0]; 
  for(int i=1; i < input.length; i++) 
    output[i] = output[i-1]+input[i]; 
  return output; 

} 

August 1, 2012 CSE 332 Data Abstractions, Summer 2012 33 



The Prefix-Sum Problem 

Above algorithm does not seem to be parallelizable: 

 Work: O(n) 

 Span: O(n) 
 

It isn't. The above algorithm is sequential. 
 

But a different algorithm gives a span of O(log n) 
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int[] prefix_sum(int[] input){ 
  int[] output = new int[input.length]; 
  output[0] = input[0]; 
  for(int i=1; i < input.length; i++) 
    output[i] = output[i-1]+input[i]; 
  return output; 

} 



Parallel Prefix-Sum 

The parallel-prefix algorithm does two passes 

 Each pass has O(n) work and O(log n) span 

 In total there is O(n) work and O(log n) span 

 Just like array summing, parallelism is n / log n  

 An exponential speedup 
 

The first pass builds a tree bottom-up 
 

The second pass traverses the tree top-down 
 

Historical note:  
Original algorithm due to R. Ladner  
and M. Fischer at the UW in 1977 
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Parallel Prefix: The Up Pass 

We build want to a binary tree where  

 Root has sum of the range [x,y) 

 If a node has sum of [lo,hi) and hi>lo,  

 Left child has sum of [lo,middle) 

 Right child has sum of [middle,hi)  

 A leaf has sum of [i,i+1), which is simply input[i] 

 

It is critical that we actually create the tree 
as we will need it for the down pass 

 We do not need an actual linked structure 

 We could use an array as we did with heaps 
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Parallel Prefix: The Up Pass 

This is an easy fork-join computation:  
 

buildRange(arr,lo,hi) 

 If lo+1 == hi, create new node with sum arr[lo] 

 Else, create two new threads: 
buildRange(arr,lo,mid) and 
buildRange(arr,mid+1,high) 
where mid = (low+high)/2 
and when threads complete, make new node with  
sum = left.sum + right.sum 

 

Performance Analysis: 

 Work: O(n) 

 Span: O(log n) 
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Up Pass Example 

input 

output 

6 4 16 10 16 14 2 8 

                 

range   0,8 

sum 

fromleft 

range  0,4 

sum 

fromleft 

range  4,8 

sum 

fromleft 

range  6,8 

sum 

fromleft 

range  4,6 

sum 

fromleft 

range  2,4 

sum 

fromleft 

range  0,2 

sum 

fromleft 

r   0,1 

s   

f 

r   1,2 

s   

f 

r   2,3 

s   

f 

r   3,4 

s   

f 

r   4,5 

s   

f 

r   5,6 

s   

f 

r   6,7 

s   

f 

r   7.8 

s   

f 
6 4 16 10 16 14 2 8 

10 26 30 10 

36 40 

76 
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Parallel Prefix: The Down Pass 

We now use the tree to get the prefix sums 
using an easy fork-join computation:  
 

Starting at the root: 

 Root is given a fromLeft of 0 

 Each node takes its fromLeft value and 

 Passes to the left child: fromLeft  

 Passes to the right child: fromLeft + left.sum 

 At leaf for position i, output[i]=fromLeft+input[i] 
 

Invariant:  
fromLeft is sum of elements left of the node’s range 
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Parallel Prefix: The Down Pass 

Note that this parallel algorithm does not 
return any values 

 Leaves assign to output array 

 This is a map, not a reduction 

 

Performance Analysis: 

 Work: O(n) 

 Span: O(log n) 
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Down Pass Example 

input 

output 

6 4 16 10 16 14 2 8 

6  10  26  36  52  66  68  76 
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36 
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Sequential Cut-Off 

Adding a sequential cut-off is easy as always: 
 

 Up Pass:  
Have leaf node hold the sum of a range 
instead of just one array value 

 

 Down Pass: 
output[lo] = fromLeft + input[lo];   

for(i=lo+1; i < hi; i++)       

 output[i] = output[i-1] + input[i] 
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Generalizing Parallel Prefix 

Just as sum-array was the simplest example of a 
common pattern, prefix-sum illustrates a pattern that 
can be used in many problems 

 Minimum, maximum of all elements to the left of i 

 Is there an element to the left of i satisfying some property? 

 Count of elements to the left of i satisfying some property 

 

That last one is perfect for an efficient parallel pack 
that builds on top of the “parallel prefix trick” 
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Pack (Think Filtering) 

Given an array input and boolean function f(e) 
produce an array output containing only 
elements e such that f(e) is true 

 

Example:   
input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24] 

 f(e): is e > 10? 

 output [17, 11, 13, 19, 24] 

 

Is this parallelizable? Of course! 

 Finding elements for the output is easy 

 But getting them in the right place seems hard 
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Parallel Map + Parallel Prefix + Parallel Map 

1. Use a parallel map to compute a bit-vector for 
true elements 

input  [17, 4, 6, 8, 11, 5, 13, 19, 0, 24] 

bits   [ 1, 0, 0, 0,  1, 0,  1,  1, 0,  1] 
 

2. Parallel-prefix sum on the bit-vector 

bitsum [ 1, 1, 1, 1,  2, 2,  3,  4, 4,  5] 
 

3. Parallel map to produce the output 

 output [17, 11, 13, 19, 24] 

  
 

 

output = new array of size bitsum[n-1] 

FORALL(i=0; i < input.length; i++){ 

  if(bits[i]==1) 

    output[bitsum[i]-1] = input[i]; 

} 
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Pack Comments 

First two steps can be combined into one pass 

 Will require changing base case for the prefix sum 

 No effect on asymptotic complexity 

 

Can also combine third step into the down pass 
of the prefix sum 

 Again no effect on asymptotic complexity 

 

Analysis: O(n) work, O(log n) span  

 Multiple passes, but this is a constant 

 

Parallelized packs will help us parallelize sorting 
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Welcome to the Parallel World 

We will continue to explore this topic and 
its implications 
 

In fact, the next class will consist of 16 
lectures presented simultaneously 

 I promise there are no concurrency 
issues with your brain 

 It is up to you to parallelize your brain 
before then 

 

The interpreters and captioner should 
attempt to grow more limbs as well 
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