
CSE 332 Data Abstractions:

Introduction to Parallelism
and Concurrency

Kate Deibel

Summer 2012

August 1, 2012 CSE 332 Data Abstractions, Summer 2012 1

Where We Are

Last time, we introduced fork-join parallelism

 Separate programming threads running at the
same time due to presence of multiple cores

 Threads can fork off into other threads

 Said threads share memory

 Threads join back together

We then discussed two ways of implementing
such parallelism in Java:

 The Java Thread Library

 The ForkJoin Framework

August 1, 2012 CSE 332 Data Abstractions, Summer 2012 2

ENOUGH IMPLEMENTATION:
ANALYZING PARALLEL CODE

Ah yes… the comfort of mathematics…

August 1, 2012 CSE 332 Data Abstractions, Summer 2012 3

Key Concepts: Work and Span

Analyzing parallel algorithms requires considering the
full range of processors available

 We parameterize this by letting TP be the running time if P
processors are available

 We then calculate two extremes: work and span

Work: T1 How long using only 1 processor

 Just "sequentialize" the recursive forking

Span: T∞ How long using infinity processors

 The longest dependence-chain

 Example: O(log n) for summing an array

 Notice that having > n/2 processors is no additional help
(a processor adds 2 items, so only n/2 needed)

 Also called "critical path length" or "computational depth"

August 1, 2012 CSE 332 Data Abstractions, Summer 2012 4

The DAG

A program execution using fork and join can be

seen as a DAG

 Nodes: Pieces of work

 Edges: Source must finish before destination starts

A fork "ends a node" and makes
two outgoing edges

 New thread

 Continuation of current thread

A join "ends a node" and makes a
node with two incoming edges

 Node just ended

 Last node of thread joined on

August 1, 2012 CSE 332 Data Abstractions, Summer 2012 5

Our Simple Examples
fork and join are very flexible, but divide-and-conquer

use them in a very basic way:

 A tree on top of an upside-down tree

August 1, 2012 CSE 332 Data Abstractions, Summer 2012 6

base cases

divide

conquer

What Else Looks Like This?

Summing an array went from O(n) sequential to
O(log n) parallel (assuming a lot of processors and

very large n)

Anything that can use results from two halves and
merge them in O(1) time has the same properties
and exponential speed-up (in theory)

August 1, 2012 CSE 332 Data Abstractions, Summer 2012 7

+ + + + + + + +

+ + + +

+ +
+

Examples

 Maximum or minimum element

 Is there an element satisfying some property (e.g.,
is there a 17)?

 Left-most element satisfying some property (e.g.,
first 17)

 What should the recursive tasks return?

 How should we merge the results?

 Corners of a rectangle containing all points (a
"bounding box")

 Counts (e.g., # of strings that start with a vowel)

 This is just summing with a different base case

 August 1, 2012 CSE 332 Data Abstractions, Summer 2012 8

More Interesting DAGs?

Of course, the DAGs are not always so simple
(and neither are the related parallel problems)

Example:

 Suppose combining two results might be expensive
enough that we want to parallelize each one

 Then each node in the inverted tree on the previous
slide would itself expand into another set of nodes
for that parallel computation

August 1, 2012 CSE 332 Data Abstractions, Summer 2012 9

Reductions

Such computations of this simple form are common
enough to have a name: reductions (or reduces?)

Produce single answer from collection via an
associative operator

 Examples: max, count, leftmost, rightmost, sum, …

 Non-example: median

Recursive results don’t have to be single numbers or
strings and can be arrays or objects with fields

 Example: Histogram of test results

But some things are inherently sequential

 How we process arr[i] may depend entirely on
the result of processing arr[i-1]

August 1, 2012 CSE 332 Data Abstractions, Summer 2012 10

Maps and Data Parallelism

A map operates on each element of a collection
independently to create a new collection of the
same size

 No combining results

 For arrays, this is so trivial some hardware has
direct support (often in graphics cards)

Canonical example: Vector addition

August 1, 2012 CSE 332 Data Abstractions, Summer 2012 11

int[] vector_add(int[] arr1, int[] arr2){
 assert (arr1.length == arr2.length);
 result = new int[arr1.length];
 FORALL(i=0; i < arr1.length; i++) {
 result[i] = arr1[i] + arr2[i];
 }
 return result;
}

Maps in ForkJoin Framework

August 1, 2012 CSE 332 Data Abstractions, Summer 2012 12

class VecAdd extends RecursiveAction {
 int lo; int hi; int[] res; int[] arr1; int[] arr2;
 VecAdd(int l,int h,int[] r,int[] a1,int[] a2){ … }
 protected void compute(){
 if(hi – lo < SEQUENTIAL_CUTOFF) {
 for(int i=lo; i < hi; i++)
 res[i] = arr1[i] + arr2[i];
 } else {
 int mid = (hi+lo)/2;
 VecAdd left = new VecAdd(lo,mid,res,arr1,arr2);
 VecAdd right= new VecAdd(mid,hi,res,arr1,arr2);
 left.fork();
 right.compute();
 left.join();
 }
 }
}

static final ForkJoinPool fjPool = new ForkJoinPool();

int[] add(int[] arr1, int[] arr2){
 assert (arr1.length == arr2.length);
 int[] ans = new int[arr1.length];
 fjPool.invoke(new VecAdd(0,arr.length,ans,arr1,arr2);
 return ans;
}

Maps and Reductions

Maps and reductions are the "workhorses" of
parallel programming
 By far the two most important and common patterns

 We will discuss two more advanced patterns later

We often use maps and reductions to
describe parallel algorithms
 We will aim to learn to recognize when an algorithm can

be written in terms of maps and reductions

 Programming them then becomes "trivial" with a little
practice (like how for-loops are second-nature to you)

August 1, 2012 CSE 332 Data Abstractions, Summer 2012 13

Digression: MapReduce on Clusters

You may have heard of Google’s "map/reduce"

 Or the open-source version Hadoop

Perform maps/reduces on data using many machines

 The system takes care of distributing the data and managing
fault tolerance

 You just write code to map one element and reduce elements
to a combined result

Separates how to do recursive divide-and-conquer
from what computation to perform

 Old idea in higher-order functional programming transferred
to large-scale distributed computing

 Complementary approach to database declarative queries

August 1, 2012 CSE 332 Data Abstractions, Summer 2012 14

Maps and Reductions on Trees

Work just fine on balanced trees

 Divide-and-conquer each child

 Example:
Finding the minimum element in an unsorted but balanced
binary tree takes O(log n) time given enough processors

How to do you implement the sequential cut-off?

 Each node stores number-of-descendants (easy to maintain)

 Or approximate it (e.g., AVL tree height)

Parallelism also correct for unbalanced trees but you
obviously do not get much speed-up

August 1, 2012 CSE 332 Data Abstractions, Summer 2012 15

Linked Lists

Can you parallelize maps or reduces over linked lists?

 Example: Increment all elements of a linked list

 Example: Sum all elements of a linked list

Nope. Once again, data structures matter!

For parallelism, balanced trees generally better than
lists so that we can get to all the data exponentially
faster O(log n) vs. O(n)

 Trees have the same flexibility as lists compared to arrays
(i.e., no shifting for insert or remove)

August 1, 2012 CSE 332 Data Abstractions, Summer 2012 16

b c d e f

front back

Analyzing algorithms

Like all algorithms, parallel algorithms should be:

 Correct

 Efficient

For our algorithms so far, their correctness is
"obvious" so we’ll focus on efficiency

 Want asymptotic bounds

 Want to analyze the algorithm without regard to a
specific number of processors

 The key "magic" of the ForkJoin Framework is getting
expected run-time performance asymptotically optimal
for the available number of processors

 Ergo we analyze algorithms assuming this guarantee

August 1, 2012 CSE 332 Data Abstractions, Summer 2012 17

Connecting to Performance
Recall: TP = run time if P processors are available

We can also think of this in terms of the program's DAG

Work = T1 = sum of run-time of all nodes in the DAG

 Note: costs are on the nodes not the edges

 That lonely processor does everything

 Any topological sort is a legal execution

 O(n) for simple maps and reductions

Span = T∞ = run-time of most-expensive path in DAG

 Note: costs are on the nodes not the edges

 Our infinite army can do everything that is ready to be
done but still has to wait for earlier results

 O(log n) for simple maps and reductions

August 1, 2012 CSE 332 Data Abstractions, Summer 2012 18

Some More Terms
Speed-up on P processors: T1 / TP

Perfect linear speed-up: If speed-up is P as we vary P

 Means we get full benefit for each additional processor:
as in doubling P halves running time

 Usually our goal

 Hard to get (sometimes impossible) in practice

Parallelism is the maximum possible speed-up: T1/T∞

 At some point, adding processors won’t help

 What that point is depends on the span

Parallel algorithms is about decreasing span
without increasing work too much

August 1, 2012 CSE 332 Data Abstractions, Summer 2012 19

Optimal TP: Thanks ForkJoin library
So we know T1 and T∞ but we want TP (e.g., P=4)

Ignoring memory-hierarchy issues (caching), TP cannot

 Less than T1 / P why not?

 Less than T∞ why not?

So an asymptotically optimal execution would be:

TP = O((T1 / P) + T∞)

First term dominates for small P, second for large P

The ForkJoin Framework gives an expected-time
guarantee of asymptotically optimal!

 Expected time because it flips coins when scheduling

 How? For an advanced course (few need to know)

 Guarantee requires a few assumptions about your code…

August 1, 2012 CSE 332 Data Abstractions, Summer 2012 20

Division of Responsibility

Our job as ForkJoin Framework users:

 Pick a good parallel algorithm and implement it

 Its execution creates a DAG of things to do

 Make all the nodes small(ish) and approximately
equal amount of work

The framework-writer’s job:

 Assign work to available processors to avoid idling

 Keep constant factors low

 Give the expected-time optimal guarantee
assuming framework-user did his/her job

TP = O((T1 / P) + T∞)

August 1, 2012 CSE 332 Data Abstractions, Summer 2012 21

Examples: TP = O((T1 / P) + T∞)

Algorithms seen so far (e.g., sum an array):

If T1 = O(n) and T∞= O(log n)

 TP = O(n/P + log n)

Suppose instead:

If T1 = O(n2) and T∞= O(n)

 TP = O(n2/P + n)

Of course, these expectations ignore any
overhead or memory issues

August 1, 2012 CSE 332 Data Abstractions, Summer 2012 22

AMDAHL’S LAW

Things are going so smoothly…

Parallelism is awesome…

Hello stranger, what's your name?

Murphy? Oh @!♪%★$☹*!!!

August 1, 2012 CSE 332 Data Abstractions, Summer 2012 23

Amdahl’s Law (mostly bad news)

In practice, much of our programming
typically has parts that parallelize well

 Maps/reductions over arrays and trees

And also parts that don’t parallelize at all

 Reading a linked list

 Getting/loading input

 Doing computations based on previous step

To understand the implications, consider this:

"Nine women cannot make a baby in one month"

August 1, 2012 CSE 332 Data Abstractions, Summer 2012 24

Amdahl’s Law (mostly bad news)

Let work (time to run on 1 processor) be 1 unit time

If S is the portion of execution that cannot be
parallelized, then we can define T1 as:

 T1 = S + (1-S) = 1

If we get perfect linear speedup on the parallel
portion, then we can define TP as:

TP = S + (1-S)/P

Thus, the overall speedup with P processors is
(Amdahl’s Law):

T1 / TP = 1 / (S + (1-S)/P)

And the parallelism (infinite processors) is:

T1 / T∞ = 1 / S

August 1, 2012 CSE 332 Data Abstractions, Summer 2012 25

Why this is such bad news

Amdahl’s Law: T1 / TP = 1 / (S + (1-S)/P)

 T1 / T∞ = 1 / S

Suppose 33% of a program is sequential

 Then a billion processors won’t give a speedup over 3

Suppose you miss the good old days (1980-2005) where
12 years or so was long enough to get 100x speedup

 Now suppose in 12 years, clock speed is the same but
you get 256 processors instead of just 1

 For the 256 cores to gain ≥100x speedup, we need

 100 1 / (S + (1-S)/256)

 Which means S .0061 or 99.4% of the algorithm must
be perfectly parallelizable!!

August 1, 2012 CSE 332 Data Abstractions, Summer 2012 26

A Plot You Have To See

August 1, 2012 CSE 332 Data Abstractions, Summer 2012 27

0

50

100

150

200

250

0.00% 5.00% 10.00% 15.00% 20.00% 25.00%

Percentage of Code that is Sequential

1 Processor 4 Processors 16 Processors 64 Processors 256 Processors

Speedup for 1, 4, 16, 64, and 256 Processors
T1 / TP = 1 / (S + (1-S)/P)

A Plot You Have To See (Zoomed In)

August 1, 2012 CSE 332 Data Abstractions, Summer 2012 28

0

20

40

60

80

100

0.00% 2.00% 4.00% 6.00% 8.00% 10.00%

Percentage of Code that is Sequential

1 Processor 4 Processors 16 Processors 64 Processors 256 Processors

Speedup for 1, 4, 16, 64, and 256 Processors
T1 / TP = 1 / (S + (1-S)/P)

All is not lost

Amdahl’s Law is a bummer!

 Doesn’t mean additional processors are worthless!!

We can always search for new parallel algorithms

 We will see that some tasks may seem inherently
sequential but can be parallelized

We can also change the problems we’re trying to
solve or pursue new problems

 Example: Video games/CGI use parallelism

 But not for rendering 10-year-old graphics faster

 They are rendering more beautiful(?) monsters

August 1, 2012 CSE 332 Data Abstractions, Summer 2012 29

A Final Word on Moore and Amdahl

Although we call both of their work laws, they
are very different entities

August 1, 2012 CSE 332 Data Abstractions, Summer 2012 30

Very different but incredibly important in the
design of computer systems

Amdahl’s Law is a mathematical theorem

 Diminishing returns of adding more processors

Moore’s "Law" is an observation about the
progress of the semiconductor industry:

 Transistor density doubles every ≈18 months

BEING CLEVER:
PARALLEL PREFIX

If we were really clever, we wouldn't constantly say
parallel because after all we are discussing parallelism
so it should be rather obvious but this comment is
getting too long and stopped being clever ages ago…

August 1, 2012 CSE 332 Data Abstractions, Summer 2012 31

Moving Forward

Done:

 "Simple" parallelism for counting, summing, finding

 Analysis of running time and implications of Amdahl’s Law

Coming up:

 Clever ways to parallelize more than is intuitively possible

 Parallel prefix:

 A "key trick" typically underlying surprising parallelization

 Enables other things like packs

 Parallel sorting: mergesort and quicksort (not in-place)

 Easy to get a little parallelism

 With cleverness can get a lot of parallelism

August 1, 2012 CSE 332 Data Abstractions, Summer 2012 32

The Prefix-Sum Problem
Given int[] input, produce int[] output such that:
 output[i]=input[0]+input[1]+…+input[i]

A sequential solution is a typical CS1 exam problem:

int[] prefix_sum(int[] input){
 int[] output = new int[input.length];
 output[0] = input[0];
 for(int i=1; i < input.length; i++)
 output[i] = output[i-1]+input[i];
 return output;

}

August 1, 2012 CSE 332 Data Abstractions, Summer 2012 33

The Prefix-Sum Problem

Above algorithm does not seem to be parallelizable:

 Work: O(n)

 Span: O(n)

It isn't. The above algorithm is sequential.

But a different algorithm gives a span of O(log n)

August 1, 2012 CSE 332 Data Abstractions, Summer 2012 34

int[] prefix_sum(int[] input){
 int[] output = new int[input.length];
 output[0] = input[0];
 for(int i=1; i < input.length; i++)
 output[i] = output[i-1]+input[i];
 return output;

}

Parallel Prefix-Sum

The parallel-prefix algorithm does two passes

 Each pass has O(n) work and O(log n) span

 In total there is O(n) work and O(log n) span

 Just like array summing, parallelism is n / log n

 An exponential speedup

The first pass builds a tree bottom-up

The second pass traverses the tree top-down

Historical note:
Original algorithm due to R. Ladner
and M. Fischer at the UW in 1977

August 1, 2012 CSE 332 Data Abstractions, Summer 2012 35

Parallel Prefix: The Up Pass

We build want to a binary tree where

 Root has sum of the range [x,y)

 If a node has sum of [lo,hi) and hi>lo,

 Left child has sum of [lo,middle)

 Right child has sum of [middle,hi)

 A leaf has sum of [i,i+1), which is simply input[i]

It is critical that we actually create the tree
as we will need it for the down pass

 We do not need an actual linked structure

 We could use an array as we did with heaps

August 1, 2012 CSE 332 Data Abstractions, Summer 2012 36

Parallel Prefix: The Up Pass

This is an easy fork-join computation:

buildRange(arr,lo,hi)

 If lo+1 == hi, create new node with sum arr[lo]

 Else, create two new threads:
buildRange(arr,lo,mid) and
buildRange(arr,mid+1,high)
where mid = (low+high)/2
and when threads complete, make new node with
sum = left.sum + right.sum

Performance Analysis:

 Work: O(n)

 Span: O(log n)

 August 1, 2012 CSE 332 Data Abstractions, Summer 2012 37

Up Pass Example

input

output

6 4 16 10 16 14 2 8

range 0,8

sum

fromleft

range 0,4

sum

fromleft

range 4,8

sum

fromleft

range 6,8

sum

fromleft

range 4,6

sum

fromleft

range 2,4

sum

fromleft

range 0,2

sum

fromleft

r 0,1

s

f

r 1,2

s

f

r 2,3

s

f

r 3,4

s

f

r 4,5

s

f

r 5,6

s

f

r 6,7

s

f

r 7.8

s

f
6 4 16 10 16 14 2 8

10 26 30 10

36 40

76

August 1, 2012 CSE 332 Data Abstractions, Summer 2012 38

Parallel Prefix: The Down Pass

We now use the tree to get the prefix sums
using an easy fork-join computation:

Starting at the root:

 Root is given a fromLeft of 0

 Each node takes its fromLeft value and

 Passes to the left child: fromLeft

 Passes to the right child: fromLeft + left.sum

 At leaf for position i, output[i]=fromLeft+input[i]

Invariant:
fromLeft is sum of elements left of the node’s range

August 1, 2012 CSE 332 Data Abstractions, Summer 2012 39

Parallel Prefix: The Down Pass

Note that this parallel algorithm does not
return any values

 Leaves assign to output array

 This is a map, not a reduction

Performance Analysis:

 Work: O(n)

 Span: O(log n)

August 1, 2012 CSE 332 Data Abstractions, Summer 2012 40

Down Pass Example

input

output

6 4 16 10 16 14 2 8

6 10 26 36 52 66 68 76

range 0,8

sum

fromleft

range 0,4

sum

fromleft

range 4,8

sum

fromleft

range 6,8

sum

fromleft

range 4,6

sum

fromleft

range 2,4

sum

fromleft

range 0,2

sum

fromleft

r 0,1

s

f

r 1,2

s

f

r 2,3

s

f

r 3,4

s

f

r 4,5

s

f

r 5,6

s

f

r 6,7

s

f

r 7.8

s

f
6 4 16 10 16 14 2 8

10 26 30 10

36 40

76

0

0

0

0

36

10 36 66 6 26 52 68

10 66

36

August 1, 2012 CSE 332 Data Abstractions, Summer 2012 41

Sequential Cut-Off

Adding a sequential cut-off is easy as always:

 Up Pass:
Have leaf node hold the sum of a range
instead of just one array value

 Down Pass:
output[lo] = fromLeft + input[lo];

for(i=lo+1; i < hi; i++)

 output[i] = output[i-1] + input[i]

August 1, 2012 CSE 332 Data Abstractions, Summer 2012 42

Generalizing Parallel Prefix

Just as sum-array was the simplest example of a
common pattern, prefix-sum illustrates a pattern that
can be used in many problems

 Minimum, maximum of all elements to the left of i

 Is there an element to the left of i satisfying some property?

 Count of elements to the left of i satisfying some property

That last one is perfect for an efficient parallel pack
that builds on top of the “parallel prefix trick”

August 1, 2012 CSE 332 Data Abstractions, Summer 2012 43

Pack (Think Filtering)

Given an array input and boolean function f(e)
produce an array output containing only
elements e such that f(e) is true

Example:
input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]

 f(e): is e > 10?

 output [17, 11, 13, 19, 24]

Is this parallelizable? Of course!

 Finding elements for the output is easy

 But getting them in the right place seems hard

August 1, 2012 CSE 332 Data Abstractions, Summer 2012 44

Parallel Map + Parallel Prefix + Parallel Map

1. Use a parallel map to compute a bit-vector for
true elements

input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]

bits [1, 0, 0, 0, 1, 0, 1, 1, 0, 1]

2. Parallel-prefix sum on the bit-vector

bitsum [1, 1, 1, 1, 2, 2, 3, 4, 4, 5]

3. Parallel map to produce the output

 output [17, 11, 13, 19, 24]

output = new array of size bitsum[n-1]

FORALL(i=0; i < input.length; i++){

 if(bits[i]==1)

 output[bitsum[i]-1] = input[i];

}

August 1, 2012 CSE 332 Data Abstractions, Summer 2012 45

Pack Comments

First two steps can be combined into one pass

 Will require changing base case for the prefix sum

 No effect on asymptotic complexity

Can also combine third step into the down pass
of the prefix sum

 Again no effect on asymptotic complexity

Analysis: O(n) work, O(log n) span

 Multiple passes, but this is a constant

Parallelized packs will help us parallelize sorting

August 1, 2012 CSE 332 Data Abstractions, Summer 2012 46

Welcome to the Parallel World

We will continue to explore this topic and
its implications

In fact, the next class will consist of 16
lectures presented simultaneously

 I promise there are no concurrency
issues with your brain

 It is up to you to parallelize your brain
before then

The interpreters and captioner should
attempt to grow more limbs as well

August 1, 2012 CSE 332 Data Abstractions, Summer 2012 47

