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Project 2 

 Big project… get started early 

 This project gives you a lot of experience 
implementing data structures specialized to 
a problem 

 You can work with a partner 

 Please contact us soon with who you will be 
working with 

 Use the message board to find a partner 

 Questions related to project are good 
fodder for quiz sections… so ask! 
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Clarifying Splay Insert 

insert(x): 

 Find x in splay tree  

 Splays it or its parent p to root 

 If x is in tree, stop (no duplicates) 

 Else, split tree based on root p 

 If r < x, then r goes in left subtree 

 If r > x, then r goes in right subtree 

 

 

 

 

 Join subtrees using x as root 
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B TREES 

Technically, they are called B+ trees but their name was 
lowered due to concerns of grade inflation 
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Reality Bites 

Despite our best efforts, AVL trees and 
splay trees can perform poorly on very 
large inputs 

 

Why? It's the fault of hardware! 
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A Typical Memory Hierarchy 

Main memory: 2GB = 231 

L2 Cache: 2MB = 221 

Disk: 1TB = 240 

L1 Cache: 128KB = 217 

CPU instructions (e.g., addition): 230/sec 

get data in L1: 229/sec = 2 insns 

get data in L2: 225/sec = 30 insns  

get data in main memory: 

222/sec = 250 insns  

get data from "new place" on disk: 

27/sec = 8,000,000 insns 
 

"streamed":  

218/sec = 4096 insns 
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Moral of The Story 

It is much faster to do:  

  5 million arithmetic ops  

  2500 L2 cache accesses  

  400 main memory accesses
  

Than: 

1 disk access 

1 disk access 

1 disk access 

Accessing the disk is 
EXPENSIVE!!! 
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M-ary Search Tree 

Perfect tree of height h has (Mh+1-1)/(M-1) nodes 
 

# hops for find: Use logM n to calculate 

 If M=256, that’s an 8x improvement 

 If n = 240, only 5 levels instead of 40 (5 disk accesses) 
 

Runtime of find if balanced: O(log2 M logM n) 

Build a search tree with branching factor M: 

 Have an array of sorted children (Node[]) 

 Choose M to fit snugly into a disk block (1 access for array) 
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Problems with M-ary Search Trees 

 What should the order property be? 
 

 How would you rebalance (ideally 
without more disk accesses)? 
 

 Any "useful" data at the internal nodes 
takes up disk-block space without being 
used by finds moving past it 
 

 Use the branching-factor idea, but for a 
different kind of balanced tree 
 Not a binary search tree 

 But still logarithmic height for any M > 2 
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B+ Trees (will just say "B Trees") 

Two types of nodes: 

 Internal nodes and leaf nodes 
 

Each internal node has room for 
up to M-1 keys and M children 

 All data are at the leaves! 
 

Order property: 

 Subtree between x and y  
Data that is  x and < y  

 Notice the  
 

Leaf has up to L sorted  
data items 
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As usual, we will focus 
only on the keys in 

our examples 
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B Tree Find 

We are used to data at internal nodes 

 

But find is still an easy root-to-leaf algorithm 

 At an internal node, binary search on the M-1 keys 

 At the leaf do binary search on the  L data items 

 

To ensure logarithmic  
running time, we need 
to guarantee balance! 
 

What should the balance condition be? 

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 11 

3     7   12   21     

x<3 3x<7 21x 12x<21 7x<12 



Structure Properties 

Root (special case) 

 If tree has  L items, root is a leaf (occurs when 
starting up, otherwise very unusual) 

 Otherwise, root has between 2 and M children 
 

Internal Node 

 Has between M/2 and M children (at least half full) 
 

Leaf Node 

 All leaves at the same depth 

 Has between L/2 and L items (at least half full) 
 

Any M > 2 and L will work 

 Picked based on disk-block size 
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Example 

Suppose:  M=4 (max # children in internal node) 
  L=5 (max # data items at leaf) 

 All internal nodes have at least 2 children 

 All leaves at same depth with at least 3 data items 
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Example 

Note on notation:  

 Inner nodes drawn horizontally  

 Leaves drawn vertically to distinguish 

 Includes all empty cells 
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Balanced enough 

Not hard to show height h is logarithmic in number of 
data items n 
 

Let M > 2 (if M = 2, then a list tree is legal  BAD!) 
 

Because all nodes are at least half full (except root 
may have only 2 children) and all leaves are at the 
same level, the minimum number of data items n for 
a height h>0 tree is… 
 

        n    2  M/2 h-1 ⋅ L/2 
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minimum number 
of leaves 

minimum data  
per leaf 

Exponential in height  
because M/2 > 1 



What makes B trees so disk friendly? 

Many keys stored in one internal node 

 All brought into memory in one disk access 

 But only if we pick M wisely 

 Makes the binary search over M-1 keys worth it 
(insignificant compared to disk access times) 

 

Internal nodes contain only keys 

 Any find wants only one data item; wasteful 

to load unnecessary items with internal nodes 

 Only bring one leaf of data items into memory 

 Data-item size does not affect what M is 
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Maintaining Balance 

So this seems like a great data structure 
 

It is 
 

But we haven’t implemented the other 
dictionary operations yet 

 insert 

 delete 
 

As with AVL trees, the hard part is 
maintaining structure properties 
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Building a B-Tree 
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The empty B-Tree 
(the root will be a 
leaf at the beginning) 

  

  

  

Insert(3) Insert(18) Insert(14) 
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18 

Simply need to 
keep the keys 
sorted in a leaf 

M = 3 L = 3 



Insert(30) 
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Building a B-Tree 

When we ‘overflow’ a leaf, we split it into 2 leaves 

 Parent gains another child 

 If there is no parent, we create one 
 

How do we pick the new key? 

 Smallest element in right subtree 

 



Insert(32) 
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 again 
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Insert(16) 
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M = 3 L = 3 
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(in this case, the root) 

??? 
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M = 3 L = 3 



Insert(12,40,45,38) 
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Given the leaves and the structure of the tree, we 
can always fill in internal node keys using the rule: 

 What is the smallest value in my right branch? 
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Insertion Algorithm 

1. Insert the data in its leaf in sorted order 
 

2. If the leaf now has L+1 items, overflow! 

a. Split the leaf into two nodes: 

 Original leaf with (L+1)/2  smaller items 

 New leaf with (L+1)/2 = L/2 larger items 

b. Attach the new child to the parent 

 Adding new key to parent in sorted order 
 

3. If Step 2 caused the parent to have M+1 

children, overflow the parent! 
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Insertion Algorithm (cont) 

4. If an internal node (parent) has M+1 kids 

a. Split the node into two nodes 

 Original node with (M+1)/2  smaller items 

 New node with (M+1)/2 = M/2 larger items 

b. Attach the new child to the parent 

 Adding new key to parent in sorted order 
 

Step 4 could make the parent overflow too 

 Repeat up the tree until a node does not overflow 

 If the root overflows, make a new root with two 

children. This is the only the tree height inceases 

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 25 



Worst-Case Efficiency of Insert 

Find correct leaf: 

Insert in leaf: 

Split leaf: 

Split parents all the way to root: 
 

Total 

O(log2 M logM n) 

O(L) 

O(L) 

O(M logM n) 
 

O(L + M logM n) 
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But it’s not that bad: 

 Splits are rare (only if a node is FULL) 

 M and L are likely to be large 

 After a split, nodes will be half empty 

 Splitting the root is thus extremely rare 

 Reducing disk accesses is name of the game:  
inserts are thus O(logM n) on average 



Adoption for Insert 

We can sometimes avoid splitting via a 
process called adoption 
 

Example: 

 

 

 

 
 Notice correction by changing parent keys 

 Implementation not necessary for efficiency 

 But introduced as it leads to how deletion works 
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Deletion 
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36 

38 

M = 3 L = 3 



delete(15) 
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Are we okay? Dang, not half full 

Are you using that 14? 

Can I borrow it? 
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M = 3 L = 3 
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M = 3 L = 3 



delete(16) 
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Are you using that 12? Yes 

Are you using that 18? Yes 
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M = 3 L = 3 



3 

12 

14 

18 

30 

36 40 

36 

38 

18 

40 

45 

14 

18 

30 

36 40 

36 

38 

18 

40 

45 

3 

12 

14 

Oops. Not enough leaves 
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M = 3 L = 3 

Well, let's just consolidate our 
leaves since we have the room 

Are you using that 18/30? 
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M = 3 L = 3 
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M = 3 L = 3 
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M = 3 L = 3 

Oops. Not enough in leaf 
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M = 3 L = 3 

We will borrow as before Oh no. Not enough leaves 
and we cannot borrow! 
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M = 3 L = 3 

We have to move up a node and collapse into a new root. 
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M = 3 L = 3 

Huh, the root is pretty small. Let's reduce the tree's height. 



Deletion Algorithm 

1. Remove the data from its leaf 
 

2. If the leaf now has L/2 - 1, underflow! 

 If a neighbor has >L/2 items,  
adopt and update parent 

 Else merge node with neighbor 

 Guaranteed to have a legal number of items 
L/2  + L/2  = L  

 Parent now has one less node 
 

1. If Step 2 caused parent to have  

M/2 - 1 children, underflow! 
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Deletion Algorithm 

4. If an internal node has M/2 - 1 children 

 If a neighbor has >M/2 items, adopt and 
update parent 

 Else merge node with neighbor 

 Guaranteed to have a legal number of items 

 Parent now has one less node, may need to 
continue underflowing up the tree 

 

Fine if we merge all the way up to the root 

 If the root went from 2 children to 1, delete 
the root and make child the root 

 This is the only case that decreases tree height 
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Worst-Case Efficiency of Delete 

Find correct leaf: 

Insert in leaf: 

Split leaf: 

Split parents all the way to root: 
 

Total 

O(log2 M logM n) 

O(L) 

O(L) 

O(M logM n) 
 

O(L + M logM n) 
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But it’s not that bad: 

 Merges are not that common 

 After a merge, a node will be over half full 

 Reducing disk accesses is name of the game:  
deletions are thus O(logM n) on average  

 



Implementing B Trees in Java? 

Assuming our goal is efficient number of disk 

accesses, Java was not designed for this 
 

This is not a programming languages course 
 

Still, it is worthwhile to know enough about "how 

Java works" and why this is probably a bad idea 

for B trees 
 

The key issue is extra levels of indirection… 
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Naïve Approach 

Even if we assume data items have int keys, you 
cannot get the data representation you want for 
"really big data"  
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interface Keyed<E> { 

  int key(E); 

} 

class BTreeNode<E implements Keyed<E>> { 

  static final int M = 128; 

  int[] keys = new int[M-1]; 

  BTreeNode<E>[] children = new BTreeNode[M]; 

  int numChildren = 0; 

  … 

} 

class BTreeLeaf<E> { 

  static final int L = 32; 

  E[] data = (E[])new Object[L]; 

  int numItems = 0; 

  … 

} 



What that looks like 
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BTreeNode (3 objects with "header words") 

70 

BTreeLeaf (data objects not in contiguous memory) 

20 

… (larger array) 

… (larger array) 

L … (larger array) 

M-1 12 40 

M-1 12 40 



The moral 

The point of B trees is to keep related data in 
contiguous memory 
 

All the red references on the previous slide are 
inappropriate 

 As minor point, beware the extra "header words" 
 

But that is "the best you can do" in Java 

 Again, the advantage is generic, reusable code 

 But for your performance-critical web-index,  
not the way to implement your B-Tree for terabytes 
of data 

 

Other languages better support "flattening objects 
into arrays" 
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HASH TABLES 

The national data structure of the Netherlands 
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Where We Are With Dictionaries 

For dictionary with n key/value pairs 
 

  insert find delete 

Unsorted linked-list O(1) O(n) O(1) 

Unsorted array O(1) O(n) O(1) 

Sorted linked list O(n) O(n) O(1) 

Sorted array O(n) O(log n) O(n) 

Balanced tree O(log n) O(log n) O(log n) 

 

           Hash Table O(1) O(1) O(1) 

           "A magical array" 
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Wait… 

Balanced trees give O(log n) worst-case 

Hash tables give O(1) on average 

 
Constant time is better!  

 

So why did we learn about 
balanced trees? 
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Challenge of Hash Tables 

Hashing is difficult to achieve 

 A hash function must be fast to calculate  

 Average O(1) requires minimal collisions 

 

Hash tables are slow for some operations 
as compared to balanced trees 

 FindMin, FindMax, Predecessor, and 
Successor go from O(log n) to  O(n) 

 printSorted goes from O(n) to O(n log n)  
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Moral 

If you need to frequently use operations 
based on sort order,       

 Then you may prefer a balanced BST 
 instead of a hash table 

 

If the emphasis is on fast lookups, 

 Then a hash table is probably better  
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Hash Tables 

A hash table is an array of some fixed size 

Basic idea: 

 

 

 

 

 

 
 

The goal: 
 

Aim for constant-time find, insert, and delete "on 
average" under reasonable assumptions 

        0 

        

⁞ 

size -1 

hash function: 

index = h(key) 

hash table 

key space (e.g., integers, strings) 
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Hash Tables 

Basic Structure 

 m possible keys (m typically large, even infinite) 

 Table is expected to have only n items  

 n is much less than m (often written n << m) 
 

Many dictionaries have this property 

 Compiler:  
All possible identifiers allowed by the language 
vs. those used in some file of one program 

 Database:  
All possible student names vs. students enrolled 

 Artificial Intelligence:  
All possible chess-board configurations vs.  
those considered by the current player 
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An Ideal Hash Functions 

 Is fast to compute 

 Rarely hashes two keys to the same index 

 Known as collisions 

 Zero collisions often impossible in theory but 
reasonably achievable in practice 
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        0 

        

⁞ 

size -1 

hash function: 

index = h(key) 

key space (e.g., integers, strings) 



Who Hashes What 

For a hash table to be generic (store elements of 
type E), we need E to be: 

 Comparable: order any two E (for all dictionaries) 

 Hashable: convert any E to an int 
 

When hash tables are a reusable library, the division 
of responsibility involves two roles: 

 

 
 

We will learn both roles, but most programmers "in 
the real world" spend more time as clients while 
understanding the library 
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E int table-index 
collision? collision 

resolution 

client hash table library 



More on Roles 

Some ambiguity in terminology as to 
which parts are "hashing" 

 

 

 

 

 

Our view is that both are important 
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E int table-index 
collision? collision 

resolution 

client hash table library 

"hashing"? 
"hashing"? 



More on Roles 

Both roles must both contribute to minimizing 

collisions (heuristically) 
 

Client should aim for different ints for the 

expected item keys 

 Do not "waste" any part of E or the int's 32 bits 
 

Library should aim for putting "similar" ints in 

different indices 

 conversion to index is almost always "mod 

table-size" 

 using prime numbers for table-size is common 
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What to Hash? 

We will focus on two most common things to 
hash: ints and strings 
 

If you have objects with several fields, it is 
usually best to  hash most of the "identifying 
fields" to avoid collisions: 
 

class Person {  

 String firstName, middleName, lastName; 

 Date birthDate;  

 … 

} 
 

An inherent trade-off: 

hashing-time vs. collision-avoidance 
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use these four values 



Hashing Integers 

key space = integers 

 

Simple hash function:  

  h(key) = key % TableSize 

 Client: f(x) = x 

 Library: g(x) = f(x) % TableSize 

 Fairly fast and natural 
 

Example: 

 TableSize = 10 

 Insert keys 7, 18, 41, 34, 10 
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Collision Avoidance 

With (x%TableSize), number of collisions depends on 

 the ints inserted 

 TableSize 
 

Larger table-size tends to help, but not always 

 Example: 70, 24, 56, 43, 10 
with TableSize = 10 and TableSize = 60 

 

Technique: Pick table size to be prime. Why? 

 Real-life data tends to have a pattern,  

 "Multiples of 61" are probably less likely than 
"multiples of 60" 

 Some collision strategies do better with prime size 
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More Arguments for a Prime Size 

If TableSize is 60 and… 

 Lots of data items are multiples of 2, wasting 50% of table 

 Lots of data items are multiples of 5, wasting 80% of table 

 Lots of data items are multiples of 10, wasting 90% of table 
 

If TableSize is 61… 

 Collisions can still happen but 2, 4, 6, 8, … will fill in table 

 Collisions can still happen, but 5, 10, 15, … will fill in table 

 Collisions can still happen but 10, 20, 30, … will fill in table 
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A Tidbit from Number Theory 
If x and y are "co-prime" ( gcd(x,y) = 1 ),  
 then (a * x) % y = (b * x) % y   
 if and only if a % y = b % y 



Hashing non-integer keys 

If keys are not ints, the client must provide a 
means to convert the key to an int 

 

Programming Trade-off: 

 Calculation speed 

 Avoiding distinct keys hashing to same ints 

 

 

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 61 



Hashing Strings 

Key space K = s0s1s2…sk-1  
where si are chars:  si  [0, 256] 

 

Some choices: Which ones best avoid collisions? 
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h K = s0  % TableSize 

h K =  si

k−1

i=0

 % TableSize 

h K =  si ∙ 37
𝑖

k−1

i=0

 % TableSize 



Combining Hash Functions 
A few rules of thumb / tricks: 

1. Use all 32 bits (be careful with negative numbers) 
 

2. Use different overlapping bits for different parts of the hash  

 This is why a factor of 37i works better than 256i 

 Example: "abcde" and "ebcda" 
 

3. When smashing two hashes into one hash, use bitwise-xor 

 bitwise-and produces too many 0 bits 

 bitwise-or produces too many 1 bits 
 

4. Rely on expertise of others; consult books and other 

resources for standard hashing functions 
 

5. Advanced: If keys are known ahead of time, a perfect hash 

can be calcualted 

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 63 



A Final Tidbit about Hash Functions 

Hash functions are typically one-way functions:  

 Calculating h(x) = y is easy/straightforward 

 Calculating h-1(y) = x is difficult/impossible 

 

This complexity of calculating the inverse of a 
hash function is very useful in security/encryption 

 Generating signatures of messages  

 You might recognize some names: 
SHA-1, MD4, MD5, etc. 
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COLLISION RESOLUTION 

Calling a State Farm agent is not an option… 
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Collision Resolution 

Collision:  

When two keys map to the same location 
in the hash table 

 

We try to avoid it, but the number of keys 
always exceeds the table size 

 

Ergo, hash tables generally must support 
some form of collision resolution 
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Flavors of Collision Resolution 

Separate Chaining 

 

Open Addressing 

 Linear Probing 

 Quadratic Probing 

 Double Hashing 
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Terminology Warning 

We and the book use the terms 

 "chaining" or "separate chaining" 

 "open addressing" 
 

Very confusingly, others use the terms 

 "open hashing" for "chaining" 

 "closed hashing" for "open addressing" 
 

We also do trees upside-down 
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Separate Chaining 
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0 / 

1 / 

2 / 

3 / 

4 / 

5 / 

6 / 

7 / 

8 / 

9 / 

All keys that map to the same  
table location are kept in a linked 
list (a.k.a. a "chain" or "bucket") 

 

 

As easy as it sounds 

 

 

Example:  
 insert 10, 22, 86, 12, 42  
 with h(x) = x % 10 



Separate Chaining 
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0 

1 / 

2 / 

3 / 

4 / 

5 / 

6 / 

7 / 

8 / 

9 / 

All keys that map to the same  
table location are kept in a linked 
list (a.k.a. a "chain" or "bucket") 

 

 

As easy as it sounds 

 

 

Example:  
 insert 10, 22, 86, 12, 42  
 with h(x) = x % 10 

10 / 



Separate Chaining 
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0 

1 / 

2 

3 / 

4 / 

5 / 

6 / 

7 / 

8 / 

9 / 

All keys that map to the same  
table location are kept in a linked 
list (a.k.a. a "chain" or "bucket") 

 

 

As easy as it sounds 

 

 

Example:  
 insert 10, 22, 86, 12, 42  
 with h(x) = x % 10 

10 / 

22 / 



Separate Chaining 
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0 

1 / 

2 

3 / 

4 / 

5 / 

6 

7 / 

8 / 

9 / 

All keys that map to the same  
table location are kept in a linked 
list (a.k.a. a "chain" or "bucket") 

 

 

As easy as it sounds 

 

 

Example:  
 insert 10, 22, 86, 12, 42  
 with h(x) = x % 10 

10 / 

22 / 

86 / 



Separate Chaining 
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0 

1 / 

2 

3 / 

4 / 

5 / 

6 

7 / 

8 / 

9 / 

All keys that map to the same  
table location are kept in a linked 
list (a.k.a. a "chain" or "bucket") 

 

 

As easy as it sounds 

 

 

Example:  
 insert 10, 22, 86, 12, 42  
 with h(x) = x % 10 

10 / 

22 

86 / 

12 / 



Separate Chaining 
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0 

1 / 

2 

3 / 

4 / 

5 / 

6 

7 / 

8 / 

9 / 

All keys that map to the same  
table location are kept in a linked 
list (a.k.a. a "chain" or "bucket") 

 

 

As easy as it sounds 

 

 

Example:  
 insert 10, 22, 86, 12, 42  
 with h(x) = x % 10 

10 / 

22 

86 / 

12 42 / 



Thoughts on Separate Chaining 

Worst-case time for find? 

 Linear 

 But only with really bad luck or bad hash function 

 Not worth avoiding (e.g., with balanced trees at each bucket) 

 Keep small number of items in each bucket 

 Overhead of tree balancing not worthwhile for small n 
 

Beyond asymptotic complexity, some "data-structure 
engineering" can improve constant factors 

 Linked list, array, or a hybrid 

 Insert at end or beginning of list  

 Splay-like: Always move item to front of list 
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Rigorous Separate Chaining Analysis 

The load factor, , of a hash table is calculated as  

𝜆 =
𝑛

𝑇𝑎𝑏𝑙𝑒𝑆𝑖𝑧𝑒
 

where n is the number of items currently in the table 
 

Under chaining, the average number of elements per 
bucket is ___ 
 

So if some inserts are followed by random finds, then 
on average: 

 Each unsuccessful find compares against ___ items 

 Each successful find compares against ___ items 
 

How big should TableSize be?? 
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Rigorous Separate Chaining Analysis 

The load factor, , of a hash table is calculated as  

𝜆 =
𝑛

𝑇𝑎𝑏𝑙𝑒𝑆𝑖𝑧𝑒
 

where n is the number of items currently in the table 
 

Under chaining, the average number of elements per 
bucket is  
 

So if some inserts are followed by random finds, then 
on average: 

 Each unsuccessful find compares against  items 

 Each successful find compares against  items 

 If  is low, find and insert likely to be O(1) 

 We like to keep  around 1 for separate chaining 
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Separate Chaining Deletion 

Not too bad and quite easy 

 Find in table 

 Delete from bucket 

 

Similar run-time as insert 

 Sensitive to underlying 
bucket structure 
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22 
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12 42 / 



Open Addressing: Linear Probing 

Separate chaining does not use all the 
space in the table. Why not use it? 

 Store directly in the array cell (no linked 
list or buckets) 

 

How to deal with collisions? 

If h(key) is already full,  

try (h(key) + 1) % TableSize.  If full, 

try (h(key) + 2) % TableSize.  If full, 

try (h(key) + 3) % TableSize.  If full… 

 

Example: insert 38, 19, 8, 79, 10 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 
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Open Addressing: Linear Probing 

Separate chaining does not use all the 
space in the table. Why not use it? 

 Store directly in the array cell (no linked 
list or buckets) 

 

How to deal with collisions? 

If h(key) is already full,  

try (h(key) + 1) % TableSize.  If full, 

try (h(key) + 2) % TableSize.  If full, 

try (h(key) + 3) % TableSize.  If full… 

 

Example: insert 38, 19, 8, 79, 10 

0 

1 

2 

3 

4 

5 

6 

7 

8 38 

9 
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Open Addressing: Linear Probing 

Separate chaining does not use all the 
space in the table. Why not use it? 

 Store directly in the array cell  
(no linked list or buckets) 

 

How to deal with collisions? 

If h(key) is already full,  

try (h(key) + 1) % TableSize.  If full, 

try (h(key) + 2) % TableSize.  If full, 

try (h(key) + 3) % TableSize.  If full… 

 

Example: insert 38, 19, 8, 79, 10 

0 

1 

2 

3 

4 

5 

6 

7 

8 38 

9 19 
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Open Addressing: Linear Probing 

Separate chaining does not use all the 
space in the table. Why not use it? 

 Store directly in the array cell  
(no linked list or buckets) 

 

How to deal with collisions? 

If h(key) is already full,  

try (h(key) + 1) % TableSize.  If full, 

try (h(key) + 2) % TableSize.  If full, 

try (h(key) + 3) % TableSize.  If full… 

 

Example: insert 38, 19, 8, 79, 10 

0 8 

1 

2 

3 

4 

5 

6 

7 

8 38 

9 19 
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Open Addressing: Linear Probing 

Separate chaining does not use all the 
space in the table. Why not use it? 

 Store directly in the array cell  
(no linked list or buckets) 

 

How to deal with collisions? 

If h(key) is already full,  

try (h(key) + 1) % TableSize.  If full, 

try (h(key) + 2) % TableSize.  If full, 

try (h(key) + 3) % TableSize.  If full… 

 

Example: insert 38, 19, 8, 79, 10 

0 8 

1 79 

2 

3 

4 

5 

6 

7 

8 38 

9 19 
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Open Addressing: Linear Probing 

Separate chaining does not use all the 
space in the table. Why not use it? 

 Store directly in the array cell  
(no linked list or buckets) 

 

How to deal with collisions? 

If h(key) is already full,  

try (h(key) + 1) % TableSize.  If full, 

try (h(key) + 2) % TableSize.  If full, 

try (h(key) + 3) % TableSize.  If full… 

 

Example: insert 38, 19, 8, 79, 10 

0 8 

1 79 

2 10 

3 

4 

5 

6 

7 

8 38 

9 19 
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Open Addressing 

This is one example of open addressing 
 

Open addressing means resolving collisions by trying 
a sequence of other positions in the table 
 

Trying the next spot is called probing 

 We just did linear probing 
h(key) + i) % TableSize 

 In general have some probe function f and use              
h(key) + f(i) % TableSize 

 

Open addressing does poorly with high load factor  

 So we want larger tables 

 Too many probes means we lose our O(1) 
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Open Addressing: Other Operations 

insert finds an open table position using a probe 
function 
 

What about find? 

 Must use same probe function to "retrace the 
trail" for the data 

 Unsuccessful search when reach empty position 
 

What about delete? 

 Must use "lazy" deletion.  Why? 

 
 Marker indicates "data was here, keep on probing" 
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Primary Clustering 

It turns out linear probing is a bad idea, even  
though the probe function is quick to compute  
(which is a good thing) 

 This tends to produce  
clusters, which lead to  
long probe sequences 

 This is called primary 
clustering 

 We saw the start of a  
cluster in our linear  
probing example 
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Analysis of Linear Probing 

Trivial fact:  
For any  < 1, linear probing will find an empty slot 

 We are safe from an infinite loop unless table is full 
 

Non-trivial facts (we won’t prove these): 

Average # of probes given load factor  

 For an unsuccessful search as TableSize → ∞: 
1

2
1 +

1

(1 − 𝜆)2
 

 

 For an successful search as TableSize → ∞:  
1

2
1 +

1

(1 − 𝜆)
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Analysis in Chart Form 

Linear-probing performance degrades rapidly as 
the table gets full 

 The Formula does assumes a "large table" but 
the point remains 

 

 

 

 

 

 

Note that separate chaining performance is linear 
in  and has no trouble with  > 1 
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Open Addressing: Quadratic Probing 

We can avoid primary clustering by changing the 
probe function from just i to f(i) 

(h(key) + f(i)) % TableSize 
 

For quadratic probing, f(i) = i2: 

0th probe: (h(key) + 0) % TableSize 

1st probe: (h(key) + 1) % TableSize 

2nd probe: (h(key) + 4) % TableSize 

3rd probe:  (h(key) + 9) % TableSize 

… 

ith probe: (h(key) + i2) % TableSize 
 

Intuition: Probes quickly "leave the neighborhood" 
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Quadratic Probing Example 
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0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

TableSize = 10 

insert(89) 



Quadratic Probing Example 

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 92 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 89 

TableSize = 10 

insert(89) 

insert(18) 



Quadratic Probing Example 

TableSize = 10 

insert(89) 

insert(18) 

insert(49) 
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7 

8 18 

9 89 



Quadratic Probing Example 

TableSize = 10 

insert(89) 

insert(18) 

insert(49) 

49 % 10 = 9 collision! 

(49 + 1) % 10 = 0 

insert(58) 
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Quadratic Probing Example 

TableSize = 10 

insert(89) 

insert(18) 

insert(49) 

insert(58) 

58 % 10 = 8 collision! 

(58 + 1) % 10 = 9 collision! 

(58 + 4) % 10 = 2 

insert(79) 

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 95 

0 49 

1 

2 58 

3 

4 

5 

6 

7 

8 18 

9 89 



Quadratic Probing Example 

TableSize = 10 

insert(89) 

insert(18) 

insert(49) 

insert(58) 

insert(79) 

79 % 10 = 9 collision! 

(79 + 1) % 10 = 0 collision! 

(79 + 4) % 10 = 3 
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0 49 

1 

2 58 

3 79 

4 

5 

6 

7 

8 18 

9 89 



Another Quadratic Probing Example 
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0 

1 

2 

3 

4 

5 

6 

TableSize = 7 

Insert: 

76                (76 % 7 = 6) 

40   (40 % 7 = 5) 

48   (48 % 7 = 6) 

5   (5 % 7 = 5) 

55   (55 % 7 = 6) 

47   (47 % 7 = 5) 

 

 

 



Another Quadratic Probing Example 
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0 

1 

2 

3 

4 

5 

6 76 

TableSize = 7 

Insert: 

76                (76 % 7 = 6) 

40   (40 % 7 = 5) 

48   (48 % 7 = 6) 

5   (5 % 7 = 5) 

55   (55 % 7 = 6) 

47   (47 % 7 = 5) 

 

 

 



Another Quadratic Probing Example 
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0 

1 

2 

3 

4 

5 40 

6 76 

TableSize = 7 

Insert: 

76                (76 % 7 = 6) 

40   (40 % 7 = 5) 

48   (48 % 7 = 6) 

5   (5 % 7 = 5) 

55   (55 % 7 = 6) 

47   (47 % 7 = 5) 

 

 

 



Another Quadratic Probing Example 
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0 48 

1 

2 

3 

4 

5 40 

6 76 

TableSize = 7 

Insert: 

76                (76 % 7 = 6) 

40   (40 % 7 = 5) 

48   (48 % 7 = 6) 

5   (5 % 7 = 5) 

55   (55 % 7 = 6) 

47   (47 % 7 = 5) 

 

 

 



Another Quadratic Probing Example 
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0 48 

1 

2 5 

3 

4 

5 40 

6 76 

TableSize = 7 

Insert: 

76    (76 % 7 = 6) 

40    (40 % 7 = 5) 

48   (48 % 7 = 6) 

5   (5 % 7 = 5) 

55   (55 % 7 = 6) 

47   (47 % 7 = 5) 

 

 

 



Another Quadratic Probing Example 
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0 48 

1 

2 5 

3 55 

4 

5 40 

6 76 

TableSize = 7 

Insert: 

76                (76 % 7 = 6) 

40   (40 % 7 = 5) 

48   (48 % 7 = 6) 

5   (5 % 7 = 5) 

55   (55 % 7 = 6) 

47   (47 % 7 = 5) 

 

 

 



Another Quadratic Probing Example 
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0 48 

1 

2 5 

3 55 

4 

5 40 

6 76 

TableSize = 7 

Insert: 

76                (76 % 7 = 6) 

40   (40 % 7 = 5) 

48   (48 % 7 = 6) 

5   (5 % 7 = 5) 

55   (55 % 7 = 6) 

47   (47 % 7 = 5) 

(47 + 1) % 7 = 6 collision! 

(47 + 4) % 7 = 2 collision!  

(47 + 9) % 7 = 0 collision! 

(47 + 16) % 7 = 0 collision! 

(47 + 25) % 7 = 2 collision! 

 

Will we ever get 
a 1 or 4?!? 



Another Quadratic Probing Example 
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0 48 

1 

2 5 

3 55 

4 

5 40 

6 76 

insert(47) will always fail here. Why? 

 

For all n, (5 + n2) % 7 is 0, 2, 5, or 6 

Proof uses induction and  

(5 + n2) % 7 = (5 + (n - 7)2) % 7 

In fact, for all c and k,  

(c + n2) % k = (c + (n - k)2) % k 

 

 

 

 

 



From Bad News to Good News 

After TableSize quadratic probes, we cycle 

through the same indices 
 

The good news:  

 For prime T and 0  i, j  T/2 where i  j, 

(h(key) + i2) % T  (h(key) + j2) % T 

 If TableSize is prime and  < ½, quadratic 

probing will find an empty slot in at most 

TableSize/2 probes 

 If you keep  < ½, no need to detect cycles as 

we just saw 
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Clustering Reconsidered 

Quadratic probing does not suffer from primary 
clustering as the quadratic nature quickly escapes 
the neighborhood 
 

But it is no help if keys initially hash the same index 

 Any 2 keys that hash to the same value will have 
the same series of moves after that 

 Called secondary clustering 
 

We can avoid secondary clustering with a probe 
function that depends on the key: double hashing 
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Open Addressing: Double Hashing 

Idea:   

Given two good hash functions h and g, it is very 
unlikely that for some key, h(key) == g(key) 

Ergo, why not probe using g(key)? 
 

For double hashing, f(i) = i ⋅ g(key): 

0th probe: (h(key) + 0 ⋅ g(key)) % TableSize 

1st probe: (h(key) + 1 ⋅ g(key)) % TableSize 

2nd probe: (h(key) + 2 ⋅ g(key)) % TableSize 

… 

ith probe: (h(key) + i ⋅ g(key)) % TableSize 
 

Crucial Detail:  

We must make sure that g(key) cannot be 0 
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Double Hashing 

Insert these values into the hash table in this 
order.  Resolve any collisions with double hashing: 

13 

28 

33 

147 

43 

T = 10 (TableSize) 

Hash Functions: 

   h(key) = key mod T 

   g(key) = 1 + ((key/T) mod (T-1))    
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Double Hashing 

Insert these values into the hash table in this 
order.  Resolve any collisions with double hashing: 

13 

28 

33 

147 

43 

T = 10 (TableSize) 

Hash Functions: 

   h(key) = key mod T 

   g(key) = 1 + ((key/T) mod (T-1))    
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Double Hashing 

Insert these values into the hash table in this 
order.  Resolve any collisions with double hashing: 

13 

28 

33 

147 

43 

T = 10 (TableSize) 

Hash Functions: 

   h(key) = key mod T 

   g(key) = 1 + ((key/T) mod (T-1))    
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Double Hashing 

Insert these values into the hash table in this 
order.  Resolve any collisions with double hashing: 

13 

28 

33  g(33) = 1 + 3 mod 9 = 4 

147  

43 

T = 10 (TableSize) 

Hash Functions: 

   h(key) = key mod T 

   g(key) = 1 + ((key/T) mod (T-1))    
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Double Hashing 

Insert these values into the hash table in this 
order.  Resolve any collisions with double hashing: 

13 

28 

33  

147  g(147) = 1 + 14 mod 9 = 6 

43 

T = 10 (TableSize) 

Hash Functions: 

   h(key) = key mod T 

   g(key) = 1 + ((key/T) mod (T-1))    
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Double Hashing 

Insert these values into the hash table in this 
order.  Resolve any collisions with double hashing: 

13 

28 

33  

147  g(147) = 1 + 14 mod 9 = 6 

43  g(43) = 1 + 4 mod 9 = 5 

 

T = 10 (TableSize) 

Hash Functions: 

   h(key) = key mod T 

   g(key) = 1 + ((key/T) mod (T-1))    
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7 33 

8 28 

9 147 

We have a problem: 
3 + 0 = 3 3 + 5 = 8 3 + 10 = 13 
 3 + 15 = 18 3 + 20 = 23  



Double Hashing Analysis 

Because each probe is "jumping" by g(key) each 
time, we should ideally "leave the neighborhood" and 
"go different places from the same initial collision" 
 

But, as in quadratic probing, we could still have a 
problem where we are not "safe" due to an infinite 
loop despite room in table 
 

This cannot happen in at least one case: 

For primes p and q such that 2 < q < p 

h(key) = key % p 

g(key) = q – (key % q) 
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Summarizing Collision Resolution 

Separate Chaining is easy 

 find, delete proportional to load factor on average 

 insert can be constant if just push on front of list 

 

Open addressing uses probing, has clustering issues 
as it gets full but still has reasons for its use: 

 Easier data representation 

 Less memory allocation 

 Run-time overhead for list nodes (but an array 
implementation could be faster) 
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REHASHING 

When you make hash from hash leftovers… 
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Rehashing 

As with array-based stacks/queues/lists 

 If table gets too full, create a bigger table and 
copy everything 

 Less helpful to shrink a table that is underfull 

 

With chaining, we get to decide what "too full" 
means 

 Keep load factor reasonable (e.g., < 1)? 

 Consider average or max size of non-empty chains 

 

For open addressing, half-full is a good rule of thumb 
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Rehashing 

What size should we choose? 

 Twice-as-big? 

 Except that won’t be prime! 

 

We go twice-as-big but guarantee prime 

 Implement by hard coding a list of prime numbers  

 You probably will not grow more than 20-30 times 
and can then calculate after that if necessary 
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Rehashing 
Can we copy all data to the same indices in the new table? 

 Will not work; we calculated the index based on TableSize 
 

Rehash Algorithm: 

Go through old table 

Do standard insert for each item into new table 
 

Resize is an O(n) operation,  

 Iterate over old table: O(n) 

 n inserts / calls to the hash function: n ⋅ O(1) = O(n) 
 

Is there some way to avoid all those hash function calls? 

 Space/time tradeoff: Could store h(key) with each data item 

 Growing the table is still O(n); only helps by a constant factor 
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IMPLEMENTING HASHING 

Reality is never as clean-cut as theory 
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Hashing and Comparing 

Our use of int key can lead to us overlooking a 
critical detail 

 We do perform the initial hash on E  

 While chaining/probing, we compare to E which 
requires equality testing (compare == 0) 
 

A hash table needs a hash function and a comparator 

 In Project 2, you will use two function objects 

 The Java library uses a more object-oriented approach:  
each object has an equals method and a hashCode 
method: 
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class Object {  

  boolean equals(Object o) {…} 

  int hashCode() {…} 

  … 

} 



Equal Objects Must Hash the Same 

The Java library (and your project hash table) make 
a very important assumption that clients must satisfy 
 

Object-oriented way of saying it: 

If a.equals(b), then we must require  

a.hashCode()==b.hashCode() 
 

Function object way of saying it: 

If c.compare(a,b) == 0, then we must require 

h.hash(a) == h.hash(b) 
 

If you ever override equals 

 You need to override hashCode also in a consistent way 

 See CoreJava book, Chapter 5 for other "gotchas" with equals 
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Comparable/Comparator Rules 

We have not emphasized important "rules" 
about comparison for: 
 all our dictionaries 

 sorting (next major topic) 
 

Comparison must impose a consistent, 
total ordering: 

For all a, b, and c: 

 If compare(a,b) < 0, then compare(b,a) > 0 

 If compare(a,b) == 0, then compare(b,a) == 0 

 If compare(a,b) < 0 and compare(b,c) < 0,  
then compare(a,c) < 0 
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A Generally Good hashCode() 

int result = 17; // start at a prime 
 

foreach field f 

   int fieldHashcode = 

     boolean: (f ? 1: 0) 

     byte, char, short, int: (int) f 

     long: (int) (f ^ (f >>> 32)) 

     float: Float.floatToIntBits(f) 

     double: Double.doubleToLongBits(f), then above 

     Object: object.hashCode( ) 
 

      result = 31 * result + fieldHashcode;  

return result; 
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Final Word on Hashing 
The hash table is one of the most important data structures 

 Efficient find, insert, and delete 

 Operations based on sorted order are not so efficient 

 Useful in many, many real-world applications 

 Popular topic for job interview questions 
 

Important to use a good hash function 

 Good distribution of key hashs 

 Not overly expensive to calculate (bit shifts good!) 
 

Important to keep hash table at a good size 

 Keep TableSize a prime number 

 Set a preferable  depending on type of hashtable 
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