
CSE 332 Data Abstractions: 
 

A Heterozygous Forest of 
AVL, Splay, and B Trees 

Kate Deibel 

Summer 2012 

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 1 



From last time… 

Binary search trees can give us great 
performance due to providing a structured 
binary search. 

 

This only occurs if the tree is balanced. 
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Three Flavors of Balance 

How to guarantee efficient search trees has been 
an active area of data structure research 

 

We will explore three variations of "balancing": 

 AVL Trees: 
Guaranteed balanced BST with only constant 
time additional overhead 

 Splay Trees: 
Ignore balance, focus on recency 

 B Trees: 
n-ary balanced search trees that work well with 
real world memory/disks 
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AVL TREES 

Arboreal masters of balance 
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Achieving a Balanced BST (part 1) 

For a BST with n nodes inserted in 
arbitrary order 

 Average height is O(log n) – see text  

 Worst case height is O(n) 

 Simple cases, such as pre-sorted, lead to 
worst-case scenario 

 Inserts and removes can and will destroy 
any current balance 
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Achieving a Balanced BST (part 2) 

Shallower trees give better performance 

 This happens when the tree's height is  
O(log n)  like a perfect or complete tree 

 

Solution: Require a Balance Condition that 

1. ensures depth is always O(log n) 

2. is easy to maintain  
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Potential Balance Conditions 

1. Left and right subtrees 
of the root have equal 
number of nodes 

 

 

2. Left and right subtrees 
of the root have equal 
height 

Too weak! 
Height mismatch example: 

Too weak! 
Double chain example: 
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Potential Balance Conditions 

3. Left and right subtrees 
of every node have 
equal number of nodes 

 

 
 

4. Left and right subtrees 
of every node have 
equal height 
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Too strong! 
Only perfect trees 

(2n – 1 nodes) 

Too strong! 
Only perfect trees 

(2n – 1 nodes) 



The AVL Balance Condition 

Left and right subtrees of every node have 
heights differing by at most 1 

 

Mathematical Definition:   

For every node x, –1  balance(x)  1 where 

    balance(node)  
        = height(node.left) – height(node.right) 
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An AVL Tree? 

To check if this tree is an AVL, we calculate 
the heights and balances for each node 
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AVL Balance Condition 

Ensures small depth 

 Can prove by showing an AVL tree of  
height h must have nodes exponential in h 

 

Efficient to maintain 

 Requires adding a height parameter to the 
node class (Why?) 

 Balance is maintained through 
constant time manipulations of  
the tree structure: single and  
double rotations 
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Calculating Height 
What is the height of a tree with root  r? 

 
 
 
 
 
 

Running time for tree with n nodes:  
 O(n) – single pass over tree 
 

Very important detail of definition: 
 height of a null tree is -1, height of tree 

with a single node is 0 
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int treeHeight(Node root) { 
  if(root == null) 
    return -1; 
  return 1 + max(treeHeight(root.left), 
                 treeHeight(root.right)); 
} 



Height of an AVL Tree? 

Using the AVL balance property, we can 
determine the minimum number of nodes in 
an AVL tree of height h 
 

Recurrence relation: 

Let S(h)be the minimum nodes in height h, then 

   S(h) = S(h-1) + S(h-2) + 1  

    where S(-1) = 0 and S(0)  = 1 

  

Solution of Recurrence: S(h)  1.62h 
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Minimal AVL Tree (height = 0) 
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Minimal AVL Tree (height = 1) 
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Minimal AVL Tree (height = 2) 
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Minimal AVL Tree (height = 3) 
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Minimal AVL Tree (height = 4) 
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AVL Tree Operations 

AVL find:  

 Same as BST find 

 

AVL insert:  

 Starts off the same as BST insert 

 Then check balance of tree 

 Potentially fix the AVL tree (4 imbalance cases) 

 

AVL delete:  

 Do the deletion 

 Then handle imbalance (same as insert) 
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Insert / Detect Potential Imbalance 
Insert the new node (at a leaf, as in a BST) 
 For each node on the path from the new 

leaf to the root 
 The insertion may, or may not, have 

changed the node’s height 
 
After recursive insertion in a subtree 
 detect height imbalance 
 perform a rotation to restore balance at 

that node 
 

All the action is in defining the correct 
rotations to restore balance 

 
July 2, 2012 CSE 332 Data Abstractions, Summer 2012 20 



The Secret 

If there is an imbalance, then there must 
be a deepest element that is imbalanced 

 After rebalancing this deepest node, every 
node is then balanced 

 Ergo, at most one node needs rebalancing 
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Example 

Insert(6) 

Insert(3) 

Insert(1) 

 

 

Third insertion violates balance 

What is a way to fix this? 
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Single Rotation 

The basic operation we use to rebalance 

 Move child of unbalanced node into parent position 

 Parent becomes a “other” child 

 Other subtrees move as allowed by the BST 
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Single Rotation Example: Insert(16) 
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Single Rotation Example: Insert(16) 
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Single Rotation Example: Insert(16) 
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Left-Left Case 

Node imbalanced due to insertion in left-
left grandchild (1 of 4 imbalance cases) 
 

First we did the insertion, which made a  
imbalanced 
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Left-Left Case 

So we rotate at a, using BST facts:  
 X < b < Y < a < Z 

A single rotation restores balance at the node 

 Node is same height as before insertion, so 
ancestors now balanced 
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Right-Right Case 

Mirror image to left-left case, so you rotate 
the other way 

 Exact same concept, but different code 
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The Other Two Cases 

Single rotations not enough for insertions 
left-right or right-left subtree  

 Simple example:  insert(1), insert(6), insert(3) 
 

First wrong idea:  single rotation as before 
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The Other Two Cases 

Single rotations not enough for insertions 
left-right or right-left subtree  

 Simple example:  insert(1), insert(6), insert(3) 
 

Second wrong idea:  single rotation on child 
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Double Rotation 

First attempt at violated the BST property 
 

Second attempt did not fix balance 
 

Double rotation: If we do both, it works!  

 Rotate problematic child and grandchild 

 Then rotate between self and new child 
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Right-Left Case 
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Right-Left Case 

Height of the subtree after rebalancing is the 
same as before insert 

 No ancestor in the tree will need rebalancing 

Does not have to be implemented as two 
rotations; can just do: 
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Left-Right Case 

Mirror image of right-left 

 No new concepts, just additional code to write 
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Memorizing Double Rotations 

Easier to remember than you may think: 

 Move grandchild c to grandparent’s position 

 Put grandparent a, parent b, and subtrees 
X, U, V, and Z in the only legal position 
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Double Rotation Example: Insert(5) 
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Double Rotation Example: Insert(5) 
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Double Rotation Example: Insert(5) 
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Double Rotation Example: 

Insert(5) 
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Double Rotation Example: Insert(5) 
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Double Rotation Example: 
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Summarizing Insert 

Insert as in a BST 
 

Check back up path for imbalance for  1 of 4 cases: 

 node’s left-left grandchild is too tall 

 node’s left-right grandchild is too tall 

 node’s right-left grandchild is too tall 

 node’s right-right grandchild is too tall 
 

Only one case can occur, because tree was balanced 
before insert 
 

After rotations, the smallest-unbalanced subtree now 
has the same height as before the insertion 

 So all ancestors are now balanced 
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Efficiency 

Worst-case complexity of find: O(log n) 
 

Worst-case complexity of insert: O(log n) 

 Rotation is O(1) 

 There’s an O(log n) path to root 

 Even without “one-rotation-is-enough” fact this 
still means O(log n) time 

 

Worst-case complexity of buildTree: O(n log n) 

 

 

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 44 



Delete 

We will not cover delete in detail 

 Read the textbook 

 May cover in section 
 

Basic idea: 

 Do the delete as in a BST 

 Where you start the balancing check depends  
on if a leaf or a node with children was removed 

 In latter case, you will start from the 
predecessor/successor for the balancing check 

 

delete is also O(log n) 
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SPLAY TREES 

If this were a medical class, we would be discussing urine 
thresholds and kidney function 

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 46 



Balancing Takes a Lot of Work 

To make AVL trees work, we needed: 

 Extra info for each node 

 Complex logic to detect imbalance 

 Recursive bottom-up implementation 

 

Can we do better with less work? 

 

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 47 



Splay Trees 

Here's an insane idea: 

 Let's take the rotating idea of AVL trees but 
do it without any care (ignore balance) 

 Insert/Find always rotate node to the root 

 

Seems crazy, right? But… 

 Amortized time per operations is O(log n) 

 Worst case time per operation is O(n) but is 
guaranteed to happen very rarely 
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Amortized Analysis 

If a sequence of M operations takes O(M f(n)) 
time, we say the amortized runtime is O(f(n)) 

 Average time per operation for any 
sequence is O(f(n)) 

 Worst case time for any sequence of M 
operations is O(M f(n)) 

 Worst case time per operation can still be 
large, say O(n) 

 

Amortized complexity is a worst-case 
guarantee for a sequences of operations 
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Interpreting Amortized Analyses 

Is amortized guarantee any weaker than worst-case? 

 Yes, it is only for sequences of operations 

 

Is amortized guarantee stronger than average-case? 

 Yes, it guarantees no bad sequences 

 

Is average-case guarantee good enough in practice? 

 No, adversarial input can always happen 

 

Is amortized guarantee good enough in practice? 

 Yes, due to promise of no bad sequences  
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The Splay Tree Idea 
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If you’re forced 
to make a really 
deep access: 

Since you’re down there 
anyway, you might as well 
fix up a lot of deep nodes! 
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Find/Insert in Splay Trees 

1. Find or insert a node k 

2. Splay k to the root using: 
zig-zag, zig-zig, or plain old zig rotation 

 

Splaying moves multiple nodes higher up 
in the tree (pushing some down too) 

 

How do we do this? 
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Naïve Approach 

One option is to repeatedly use AVL single 
rotation until node k becomes the root: 
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Naïve Approach 

Why this is bad: 

 r gets pushed almost as low as k was 

 Bad sequence: find(k), find(r), find(k), etc. 
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Splay: Zig-Zag 
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Does this look familiar? 

It's a double AVL rotation 
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Splay: Zig-Zig 
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Is this just two AVL single 
rotations in a row? 

Not quite. We rotate g & p 
and then p & k 



Splay: Zig-Zig 
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Why does this help? 

Same number of nodes helped 
as hurt, but later rotations will 
help the whole subtree 



Special Case for Root: Zig 
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Splaying Example: find(6) 

2 

1 

3 

4 

5 

6 

find(6) 
zig-zig 

2 

1 

3 

6 

5 

4 

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 59 



Still Splaying 6 
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Stay on target… 
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Splay Again: find(4) 
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Almost there… 
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Wait a sec… 

What happened here? 

 Didn’t the two find operations take linear 
time instead of logarithmic? 

 What about the amortized O(log n) 
guarantee? 
 

The guarantee still holds 

 We must take into account the previous steps 
used to create this tree.   

 The analysis says that some operations may be 
linear, but they average out in the long run 
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Why Splaying Helps 

If a node k on the access path is at depth d 
before the splay 

 It’s at about depth d/2 after the splay 

 

Overall, nodes which are low on the access 
path tend to move closer to the root 

 

Importantly, we fix up/balance the tree every 
time we do an expensive (deep) access 

 This gives splaying its amortized O(log n) 
performance (Maybe not now, but soon, 
and for the rest of the operations) 

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 65 



Further Practical Benefits of Splaying 

No heights to maintain/No imbalances to check 

 Less storage per node 

 Easier to code (seriously!) 

 

Data accessed once is often soon accessed again 

 Splaying does implicit caching to the root 

 This important idea is known as locality 
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Splay Operations: find 

1. Find the node in normal BST manner 

2. Splay the node to the root 

 if node not found, splay what would have 
been the node's parent 

 

What if we didn’t splay? 

 The amortized guarantee would fail! 

 Consider this sequence with k not in tree: 
find(k), find(k), find(k), … 

 Splaying would make the second find(k) a 
constant time operation 
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Splay Operations: Insert 

To insert, could do an ordinary BST insert 

 That would not fix up tree 

 A BST insert followed by a find  and splay? 
 

Better idea: Splay before the insert! 

 How? A combination of find and split 

 What's split? 
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Splitting in Binary Search Trees 

split(T, x) creates from T two BSTs L and R: 

 All elements of T are in either subtree  
L or R  (T = L  R) 

 All elements in L are  x 

 All elements in R are  x 

 L and R share no elements (L  R = )  

 

T R L 

x 
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Splay Operations: Split 

To split, do a find on x:  

 If x is in T, then splay x to the root 

 Otherwise splay the last node found to the root  

 After splaying split the tree at the root 

T 

OR 

L R 

 x > x 

x 

L R 

 x < x 

x 
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Back to Insert 

insert(x): 

 Split on x 

 Join subtrees using x as root 

T L R 

< x > x 

x 
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Insert Example: insert(5) 
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Splay Operations: Delete 

The other operations splayed, so we’d 
better do that for delete as well 
 

delete(x): 

 find x and splay to root 

 if x is there, remove it 

 …? 

 
Now what? 

T L R 

< x > x 

x 

find(x) 

L R 

< x > x 

delete x 
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Join Operation 

Join(L, R) merges two trees L < R 

 Splay on the maximum element in L 
then attach R 

 

 

 

 
 

Similar to BST delete: 
find max = find element with no right child 

 

 

 

L R 

splay 

max in L 
L R L R 

join 
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Splay Operations: Delete 

delete(x): 

 find x and splay to root 

 if x is there, remove it 

 join the resulting subtrees 
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Delete Example: delete(4) 
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B TREES 

Technically, they are called B+ trees but their name was 
lowered due to concerns of grade inflation 
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Reality Bites 

Despite our best efforts, AVL trees and 
splay trees can perform poorly on very 
large inputs 

 

Why? It's the fault of hardware! 
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A Typical Memory Hierarchy 

Main memory: 2GB = 231 

L2 Cache: 2MB = 221 

Disk: 1TB = 240 

L1 Cache: 128KB = 217 

CPU instructions (e.g., addition): 230/sec 

get data in L1: 229/sec = 2 insns 

get data in L2: 225/sec = 30 insns  

get data in main memory: 

222/sec = 250 insns  

get data from “new place” on disk: 

27/sec =8,000,000 insns 
 

“streamed”: 218/sec 
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Moral of The Story 

It is much faster to do:  

  5 million arithmetic ops  

  2500 L2 cache accesses  

  400 main memory accesses
  

Than: 

1 disk access 

1 disk access 

1 disk access 

Accessing the disk is 
EXPENSIVE!!! 
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Why are computers built this way? 

 Physical realities of speed of light and relative  
closeness to CPU 

 Cost (price per byte of different technologies) 

 Disks get much bigger not much faster 

 7200 RPM spin is slow compared to RAM 

 Disks unlikely to spin faster in the future 

 Solid-state drives are faster than disks but still 
slower due to distance, write performance, etc. 

 Speedups at higher levels generally make 
lower levels relatively slower 
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Dealing with Latency 

Moving data up the memory hierarchy is slow 
because of latency 
 

We can do better by grabbing surrounding 
memory with each request 

 It is easy to do since we are there anyways 

 Likely to be asked for soon (locality of reference) 
 

As defined by the operating system: 

 Amount moved from disk to memory is called block 
or page size 

 Amount moved from memory to cache is called the 
line size 
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M-ary Search Tree 

Perfect tree of height h has (Mh+1-1)/(M-1) nodes 
 

# hops for find: Use logM n to calculate 

 If M=256, that’s an 8x improvement 

 If n = 240, only 5 levels instead of 40 (5 disk accesses) 
 

Runtime of find if balanced: O(log2 M logM n) 

Build a search tree with branching factor M: 

 Have an array of sorted children (Node[]) 

 Choose M to fit snugly into a disk block (1 access for array) 
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Problems with M-ary Search Trees 

 What should the order property be? 
 

 How would you rebalance (ideally 
without more disk accesses)? 
 

 Any “useful” data at the internal nodes 
takes up disk-block space without being 
used by finds moving past it 
 

 Use the branching-factor idea, but for a 
different kind of balanced tree 
 Not a binary search tree 

 But still logarithmic height for any M > 2 
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B+ Trees (will just say “B Trees”) 

Two types of nodes: 

 Internal nodes and leaf nodes 
 

Each internal node has room for 
up to M-1 keys and M children 

 All data are at the leaves! 
 

Order property: 

 Subtree between x and y  
Data that is  x and < y  

 Notice the  
 

Leaf has up to L sorted  
data items 
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As usual, we will focus 
only on the keys in 

our examples 

3     7   12   21     

x<3 3x<7 21x 12x<21 7x<12 



B Tree Find 

We are used to data at internal nodes 

 

But find is still an easy root-to-leaf algorithm 

 At an internal node, binary search on the M-1 keys 

 At the leaf do binary search on the  L data items 

 

To ensure logarithmic  
running time, we need 
to guarantee balance! 
 

What should the balance condition be? 
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Structure Properties 

Root (special case) 

 If tree has  L items, root is a leaf (occurs when 
starting up, otherwise very unusual) 

 Otherwise, root has between 2 and M children 
 

Internal Node 

 Has between M/2 and M children (at least half full) 
 

Leaf Node 

 All leaves at the same depth 

 Has between L/2 and L items (at least half full) 
 

Any M > 2 and L will work 

 Picked based on disk-block size 
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Example 

Suppose:  M=4 (max # children in internal node) 
  L=5 (max # data items at leaf) 

 All internal nodes have at least 2 children 

 All leaves at same depth with at least 3 data items 
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Example 

Note on notation:  

 Inner nodes drawn horizontally  

 Leaves drawn vertically to distinguish 

 Includes all empty cells 
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Balanced enough 

Not hard to show height h is logarithmic in number of 
data items n 
 

Let M > 2 (if M = 2, then a list tree is legal  BAD!) 
 

Because all nodes are at least half full (except root 
may have only 2 children) and all leaves are at the 
same level, the minimum number of data items n for 
a height h>0 tree is… 
 

        n    2  M/2 h-1 ⋅ L/2 
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minimum number 
of leaves 

minimum data  
per leaf 

Exponential in height  
because M/2 > 1 



What makes B trees so disk friendly? 

Many keys stored in one internal node 

 All brought into memory in one disk access 

 But only if we pick M wisely 

 Makes the binary search over M-1 keys worth it 
(insignificant compared to disk access times) 

 

Internal nodes contain only keys 

 Any find wants only one data item; wasteful 

to load unnecessary items with internal nodes 

 Only bring one leaf of data items into memory 

 Data-item size does not affect what M is 
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Maintaining Balance 

So this seems like a great data structure 
 

It is 
 

But we haven’t implemented the other 
dictionary operations yet 

 insert 

 delete 
 

As with AVL trees, the hard part is 
maintaining structure properties 
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Building a B-Tree 
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The empty B-Tree 
(the root will be a 
leaf at the beginning) 

Insert(3) Insert(18) 
  

  

  

Insert(14) 
  

  

  

  

  

  3 3 

18 

3 

14 

18 

Simply need to 
keep data sorted 

M = 3 L = 3 



Insert(30) 

3 

14 

18 

3 

14 

18 

M = 3 L = 3 

30 

3 

14 

18 

30 

18 

??? 
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Building a B-Tree 

When we ‘overflow’ a leaf, we split it into 2 leaves 

 Parent gains another child 

 If there is no parent, we create one 
 

How do we pick the new key? 

 Smallest element in right subtree 

 



Insert(32) 
3 

14 

18 

30 

18 

3 

14 

18 

30 

18 

3 

14 

18 

30 

18 

Insert(36) 

3 

14 

18 

30 

18 

Insert(15) 

32 

32 

36 

32 

32 

36 

32 

15 

Split leaf 
 again 
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M = 3 L = 3 



Insert(16) 

3 

14 

15 

18 

30 

18 32 

32 

36 

3 

14 

15 

18 

30 

18 32 

32 

36 

16 
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M = 3 L = 3 



18 

30 

18 32 

32 

36 

3 

14 

15 

16 

15 

15 32 

18 

Split the internal node 
(in this case, the root) 

??? 
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M = 3 L = 3 



Insert(12,40,45,38) 

3 
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15 

16 

15 

18 

30 

32 

32 

36 

18 

3 

12 

14 

15 

16 

15 

18 

30 

32 40 

32 

36 

38 

18 

40 

45 

Given the leaves and the structure of the tree, we 
can always fill in internal node keys using the rule: 

 What is the smallest value in my right branch? 
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M = 3 L = 3 



Insertion Algorithm 

1. Insert the data in its leaf in sorted order 
 

2. If the leaf now has L+1 items, overflow! 

a. Split the leaf into two nodes: 

 Original leaf with (L+1)/2  smaller items 

 New leaf with (L+1)/2 = L/2 larger items 

b. Attach the new child to the parent 

 Adding new key to parent in sorted order 
 

3. If Step 2 caused the parent to have M+1 

children, overflow the parent! 
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Insertion Algorithm (cont) 

4. If an internal node (parent) has M+1 kids 

a. Split the node into two nodes 

 Original node with (M+1)/2  smaller items 

 New node with (M+1)/2 = M/2 larger items 

b. Attach the new child to the parent 

 Adding new key to parent in sorted order 
 

Step 4 could make the parent overflow too 

 Repeat up the tree until a node does not overflow 

 If the root overflows, make a new root with two 

children. This is the only the tree height inceases 
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Worst-Case Efficiency of Insert 

Find correct leaf: 

Insert in leaf: 

Split leaf: 

Split parents all the way to root: 
 

Total 

O(log2 M logM n) 

O(L) 

O(L) 

O(M logM n) 
 

O(L + M logM n) 
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But it’s not that bad: 

 Splits are rare (only if a node is FULL) 

 M and L are likely to be large 

 After a split, nodes will be half empty 

 Splitting the root is thus extremely rare 

 Reducing disk accesses is name of the game:  
inserts are thus O(logM n) on average 



Adoption for Insert 

We can sometimes avoid splitting via a 
process called adoption 
 

Example: 

 

 

 

 
 Notice correction by changing parent keys 

 Implementation not necessary for efficiency 
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30 

insert(31) 

32 18 32 



delete(32) 
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Deletion 
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36 

38 

M = 3 L = 3 



delete(15) 
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45 

Are we okay? Dang, not half full 

Are you using that 14? 

Can I borrow it? 
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M = 3 L = 3 
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M = 3 L = 3 



delete(16) 
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18 
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3 

12 

14 

Are you using that 12? Yes 

Are you using that 18? Yes 
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M = 3 L = 3 
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3 

12 

14 

Oops. Not enough leaves 
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M = 3 L = 3 

Well, let's just consolidate our 
leaves since we have the room 

Are you using that 18/30? 
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M = 3 L = 3 



delete(14) 
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M = 3 L = 3 



delete(18) 
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M = 3 L = 3 

Oops. Not enough leaves 
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M = 3 L = 3 

We will borrow as before Oh no. Not enough leaves 
and we cannot borrow! 
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M = 3 L = 3 

We have to move up a node and collapse into a new root. 
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45 

36 40 

3 
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3 

36 

38 

40 

45 
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M = 3 L = 3 

Huh, the root is pretty small. Let's reduce the tree's height. 



Deletion Algorithm 

1. Remove the data from its leaf 
 

2. If the leaf now has L/2 - 1, underflow! 

 If a neighbor has >L/2 items,  
adopt and update parent 

 Else merge node with neighbor 

 Guaranteed to have a legal number of items 
L/2  + L/2  = L  

 Parent now has one less node 
 

1. If Step 2 caused parent to have  

M/2 - 1 children, underflow! 
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Deletion Algorithm 

4. If an internal node has M/2 - 1 children 

 If a neighbor has >M/2 items, adopt and 
update parent 

 Else merge node with neighbor 

 Guaranteed to have a legal number of items 

 Parent now has one less node, may need to 
continue underflowing up the tree 

 

Fine if we merge all the way up to the root 

 If the root went from 2 children to 1, delete 
the root and make child the root 

 This is the only case that decreases tree height 
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Worst-Case Efficiency of Delete 

Find correct leaf: 

Insert in leaf: 

Split leaf: 

Split parents all the way to root: 
 

Total 

O(log2 M logM n) 

O(L) 

O(L) 

O(M logM n) 
 

O(L + M logM n) 
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But it’s not that bad: 

 Merges are not that common 

 After a merge, a node will be over half full 

 Reducing disk accesses is name of the game:  
deletions are thus O(logM n) on average  

 



Implementing B Trees in Java? 

Assuming our goal is efficient number of disk 

accesses, Java was not designed for this 
 

This is not a programming languages course 
 

Still, it is worthwhile to know enough about “how 

Java works” and why this is probably a bad idea 

for B trees 
 

The key issue is extra levels of indirection… 
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Naïve Approach 

Even if we assume data items have int keys, you 
cannot get the data representation you want for 
“really big data”  

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 118 

interface Keyed<E> { 

  int key(E); 

} 

class BTreeNode<E implements Keyed<E>> { 

  static final int M = 128; 

  int[] keys = new int[M-1]; 

  BTreeNode<E>[] children = new BTreeNode[M]; 

  int numChildren = 0; 

  … 

} 

class BTreeLeaf<E> { 

  static final int L = 32; 

  E[] data = (E[])new Object[L]; 

  int numItems = 0; 

  … 

} 



What that looks like 
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BTreeNode (3 objects with “header words”) 

70 

BTreeLeaf (data objects not in contiguous memory) 

20 

… (larger array) 

… (larger array) 

L … (larger array) 

M-1 12 40 

M-1 12 40 



The moral 

The point of B trees is to keep related data in 
contiguous memory 
 

All the red references on the previous slide are 
inappropriate 

 As minor point, beware the extra “header words” 
 

But that is “the best you can do” in Java 

 Again, the advantage is generic, reusable code 

 But for your performance-critical web-index,  
not the way to implement your B-Tree for terabytes 
of data 

 

Other languages better support “flattening objects 
into arrays” 
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FINAL THOUGHTS 

Did we actually get here in one lecture? 
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Conclusion: Balanced Trees 

Balanced trees make good dictionaries 
because they guarantee logarithmic-time 
find, insert, and delete 

 Essential and beautiful computer science 

 But only if you can maintain balance within the 
time bound and the underlying  computer 
architecture 

 

Another great balanced tree which we sadly 
will not cover (but easy to read about) 

 Red-black trees: all leaves have depth within a 
factor of 2 
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