
CSE 332 Data Abstractions:

A Heterozygous Forest of
AVL, Splay, and B Trees

Kate Deibel

Summer 2012

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 1

From last time…

Binary search trees can give us great
performance due to providing a structured
binary search.

This only occurs if the tree is balanced.

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 2

Three Flavors of Balance

How to guarantee efficient search trees has been
an active area of data structure research

We will explore three variations of "balancing":

 AVL Trees:
Guaranteed balanced BST with only constant
time additional overhead

 Splay Trees:
Ignore balance, focus on recency

 B Trees:
n-ary balanced search trees that work well with
real world memory/disks

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 3

AVL TREES

Arboreal masters of balance

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 4

Achieving a Balanced BST (part 1)

For a BST with n nodes inserted in
arbitrary order

 Average height is O(log n) – see text

 Worst case height is O(n)

 Simple cases, such as pre-sorted, lead to
worst-case scenario

 Inserts and removes can and will destroy
any current balance

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 5

Achieving a Balanced BST (part 2)

Shallower trees give better performance

 This happens when the tree's height is
O(log n)  like a perfect or complete tree

Solution: Require a Balance Condition that

1. ensures depth is always O(log n)

2. is easy to maintain

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 6

Potential Balance Conditions

1. Left and right subtrees
of the root have equal
number of nodes

2. Left and right subtrees
of the root have equal
height

Too weak!
Height mismatch example:

Too weak!
Double chain example:

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 7

Potential Balance Conditions

3. Left and right subtrees
of every node have
equal number of nodes

4. Left and right subtrees
of every node have
equal height

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 8

Too strong!
Only perfect trees

(2n – 1 nodes)

Too strong!
Only perfect trees

(2n – 1 nodes)

The AVL Balance Condition

Left and right subtrees of every node have
heights differing by at most 1

Mathematical Definition:

For every node x, –1  balance(x)  1 where

 balance(node)
 = height(node.left) – height(node.right)

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 9

An AVL Tree?

To check if this tree is an AVL, we calculate
the heights and balances for each node

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 10

3

11 7 1

8 4

6

2

5

0

0 0 0

h:1, b:1

h:1, b:0

h:2, b:-2

h:3, b:2

h:4, b:2

h:-1

AVL Balance Condition

Ensures small depth

 Can prove by showing an AVL tree of
height h must have nodes exponential in h

Efficient to maintain

 Requires adding a height parameter to the
node class (Why?)

 Balance is maintained through
constant time manipulations of
the tree structure: single and
double rotations

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 11

…

3

value

height

10 key

children

Calculating Height
What is the height of a tree with root r?

Running time for tree with n nodes:
 O(n) – single pass over tree

Very important detail of definition:
 height of a null tree is -1, height of tree

with a single node is 0

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 12

int treeHeight(Node root) {
 if(root == null)
 return -1;
 return 1 + max(treeHeight(root.left),
 treeHeight(root.right));
}

Height of an AVL Tree?

Using the AVL balance property, we can
determine the minimum number of nodes in
an AVL tree of height h

Recurrence relation:

Let S(h)be the minimum nodes in height h, then

 S(h) = S(h-1) + S(h-2) + 1

 where S(-1) = 0 and S(0) = 1

Solution of Recurrence: S(h)  1.62h

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 13

Minimal AVL Tree (height = 0)

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 14

Minimal AVL Tree (height = 1)

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 15

Minimal AVL Tree (height = 2)

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 16

Minimal AVL Tree (height = 3)

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 17

Minimal AVL Tree (height = 4)

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 18

AVL Tree Operations

AVL find:

 Same as BST find

AVL insert:

 Starts off the same as BST insert

 Then check balance of tree

 Potentially fix the AVL tree (4 imbalance cases)

AVL delete:

 Do the deletion

 Then handle imbalance (same as insert)

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 19

Insert / Detect Potential Imbalance
Insert the new node (at a leaf, as in a BST)
 For each node on the path from the new

leaf to the root
 The insertion may, or may not, have

changed the node’s height

After recursive insertion in a subtree
 detect height imbalance
 perform a rotation to restore balance at

that node

All the action is in defining the correct
rotations to restore balance

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 20

The Secret

If there is an imbalance, then there must
be a deepest element that is imbalanced

 After rebalancing this deepest node, every
node is then balanced

 Ergo, at most one node needs rebalancing

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 21

Example

Insert(6)

Insert(3)

Insert(1)

Third insertion violates balance

What is a way to fix this?

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 22

6

3

1

2

1

0

6

3

1

0

6
0

Single Rotation

The basic operation we use to rebalance

 Move child of unbalanced node into parent position

 Parent becomes a “other” child

 Other subtrees move as allowed by the BST

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 23

3

1 6
0 0

1

6

3

0

1

2
Balance
violated

here

1

Single Rotation Example: Insert(16)

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 24

10 4

22 8

15

3 6

19

17 20

24

16

Single Rotation Example: Insert(16)

10 4

22 8

15

3 6

19

17 20

24

16

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 25

Single Rotation Example: Insert(16)

10 4

22 8

15

3 6

19

17 20

24

16

10 4

8

15

3 6

19

17

16

22

24 20

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 26

Left-Left Case

Node imbalanced due to insertion in left-
left grandchild (1 of 4 imbalance cases)

First we did the insertion, which made a
imbalanced

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 27

a

Z

Y

b

X

h h

h

h+1
h+2 a

Z

Y

b

X

h+1 h

h

h+2
h+3

Left-Left Case

So we rotate at a, using BST facts:
 X < b < Y < a < Z

A single rotation restores balance at the node

 Node is same height as before insertion, so
ancestors now balanced

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 28

a

Z

Y

b

X

h+1 h

h

h+2
h+3 b

Z Y

a

h+1 h
h

h+1

h+2

X

Right-Right Case

Mirror image to left-left case, so you rotate
the other way

 Exact same concept, but different code

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 29

a

Z Y

X

h

h
h+1

h+3

b

h+2 b

Z

Y

a

X

h h

h+1

h+1
h+2

The Other Two Cases

Single rotations not enough for insertions
left-right or right-left subtree

 Simple example: insert(1), insert(6), insert(3)

First wrong idea: single rotation as before

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 30

3

6

1

0

1

 2

6

1 3

1

0 0

The Other Two Cases

Single rotations not enough for insertions
left-right or right-left subtree

 Simple example: insert(1), insert(6), insert(3)

Second wrong idea: single rotation on child

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 31

3

6

1

0

1

 2

6

3

1

0

 1

 2

Double Rotation

First attempt at violated the BST property

Second attempt did not fix balance

Double rotation: If we do both, it works!

 Rotate problematic child and grandchild

 Then rotate between self and new child

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 32

3

6

1

0

1

 2

6

3

1

0

 1

 2

0 0

1

1

3

6

Intuition: 3 must become root

Right-Left Case

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 33

a

X

b

c
h-1

h

h

h

V
U

h+1

h+2

h+3

Z

a

X

c

h-1
h+1 h

h

V

U

h+2

h+3

Z

b

h

c

X

h-1

h+1

h

h+1

V U

h+2

Z

b

h

a

h

Right-Left Case

Height of the subtree after rebalancing is the
same as before insert

 No ancestor in the tree will need rebalancing

Does not have to be implemented as two
rotations; can just do:

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 34

a

X

b

c

h-1

h

h

h

V
U

h+1

h+2

h+3

Z

c

X

h-1

h+1

h

h+1

V U

h+2

Z

b

h

a

h

Left-Right Case

Mirror image of right-left

 No new concepts, just additional code to write

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 35

a

h-1

h

h
h

V U

h+1

h+2

h+3

Z

X

b

c

c

X

h-1

h+1

h

h+1

V U

h+2

Z

a

h

b

h

Memorizing Double Rotations

Easier to remember than you may think:

 Move grandchild c to grandparent’s position

 Put grandparent a, parent b, and subtrees
X, U, V, and Z in the only legal position

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 36

Double Rotation Example: Insert(5)

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 37

5

10 4

8

15

3 6

19

17

20 16

22

24

Double Rotation Example: Insert(5)

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 38

5

10 4

8

15

3 6

19

17

20 16

22

24

Double Rotation Example: Insert(5)

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 39

5

10 4

8

15

3 6

19

17

20 16

22

24

Double Rotation Example:

Insert(5)

5

10 4

8

15

3 6

19

17

20 16

22

24

15

19

17

20 16

22

24

10

8

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 40

Double Rotation Example: Insert(5)

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 41

5

10 4

8

15

3 6

19

17

20 16

22

24

15

19

17

20 16

22

24

10

8

6

4

3 5

Double Rotation Example:

Insert(5)
15

19

17

20 16

22

24

10

8

6

4

3 5

15

19

17

20 16

22

24 10

8

6

4

3 5

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 42

Summarizing Insert

Insert as in a BST

Check back up path for imbalance for 1 of 4 cases:

 node’s left-left grandchild is too tall

 node’s left-right grandchild is too tall

 node’s right-left grandchild is too tall

 node’s right-right grandchild is too tall

Only one case can occur, because tree was balanced
before insert

After rotations, the smallest-unbalanced subtree now
has the same height as before the insertion

 So all ancestors are now balanced

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 43

Efficiency

Worst-case complexity of find: O(log n)

Worst-case complexity of insert: O(log n)

 Rotation is O(1)

 There’s an O(log n) path to root

 Even without “one-rotation-is-enough” fact this
still means O(log n) time

Worst-case complexity of buildTree: O(n log n)

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 44

Delete

We will not cover delete in detail

 Read the textbook

 May cover in section

Basic idea:

 Do the delete as in a BST

 Where you start the balancing check depends
on if a leaf or a node with children was removed

 In latter case, you will start from the
predecessor/successor for the balancing check

delete is also O(log n)

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 45

SPLAY TREES

If this were a medical class, we would be discussing urine
thresholds and kidney function

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 46

Balancing Takes a Lot of Work

To make AVL trees work, we needed:

 Extra info for each node

 Complex logic to detect imbalance

 Recursive bottom-up implementation

Can we do better with less work?

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 47

Splay Trees

Here's an insane idea:

 Let's take the rotating idea of AVL trees but
do it without any care (ignore balance)

 Insert/Find always rotate node to the root

Seems crazy, right? But…

 Amortized time per operations is O(log n)

 Worst case time per operation is O(n) but is
guaranteed to happen very rarely

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 48

Amortized Analysis

If a sequence of M operations takes O(M f(n))
time, we say the amortized runtime is O(f(n))

 Average time per operation for any
sequence is O(f(n))

 Worst case time for any sequence of M
operations is O(M f(n))

 Worst case time per operation can still be
large, say O(n)

Amortized complexity is a worst-case
guarantee for a sequences of operations

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 49

Interpreting Amortized Analyses

Is amortized guarantee any weaker than worst-case?

 Yes, it is only for sequences of operations

Is amortized guarantee stronger than average-case?

 Yes, it guarantees no bad sequences

Is average-case guarantee good enough in practice?

 No, adversarial input can always happen

Is amortized guarantee good enough in practice?

 Yes, due to promise of no bad sequences

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 50

The Splay Tree Idea

17

10

9 2

5

3

If you’re forced
to make a really
deep access:

Since you’re down there
anyway, you might as well
fix up a lot of deep nodes!

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 51

Find/Insert in Splay Trees

1. Find or insert a node k

2. Splay k to the root using:
zig-zag, zig-zig, or plain old zig rotation

Splaying moves multiple nodes higher up
in the tree (pushing some down too)

How do we do this?

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 52

Naïve Approach

One option is to repeatedly use AVL single
rotation until node k becomes the root:

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 53

A

B

C

D

E

F

k

s

r

q

p

A

B

C

D

E

F

s

r

q

p

k

Naïve Approach

Why this is bad:

 r gets pushed almost as low as k was

 Bad sequence: find(k), find(r), find(k), etc.

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 54

A

B

C

D

E

F

k

s

r

q

p

A

B

C

D

E

F

s

r

q

p

k

Splay: Zig-Zag

g

X

p

Y

k

Z

W

Does this look familiar?

It's a double AVL rotation

Blue nodes are Helped

Red nodes are Hurt

k

Y

g

W

p

Z X

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 55

Splay: Zig-Zig

k

Z

Y

p

X

g

W

g

W

X

p

Y

k

Z

Blue nodes are Helped

Red nodes are Hurt

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 56

Is this just two AVL single
rotations in a row?

Not quite. We rotate g & p
and then p & k

Splay: Zig-Zig

k

Z

Y

p

X

g

W

g

W

X

p

Y

k

Z

Blue nodes are Helped

Red nodes are Hurt

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 57

Why does this help?

Same number of nodes helped
as hurt, but later rotations will
help the whole subtree

Special Case for Root: Zig

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 58

p

Z

Y

k

X

X

k

Y

p

Z

Relative depth of p, Y, and Z?

Down one level

Relative depth of everyone else?

Much better!

Why not drop zig-zig and just zig all the way?

No! Zig helps one child subtree. Zig-zig helps two!

Splaying Example: find(6)

2

1

3

4

5

6

find(6)
zig-zig

2

1

3

6

5

4

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 59

Still Splaying 6

2

1

3

6

5

4

zig-zig

1

6

3

2 5

4

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 60

Stay on target…

1

6

3

2 5

4

6

1

3

2 5

4

zig

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 61

Splay Again: find(4)

6

1

3

2 5

4

6

1

4

3 5

2

find(4)
zig-zag

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 62

Almost there…

6

1

4

3 5

2

6 1

4

3 5

2

zig-zag

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 63

Wait a sec…

What happened here?

 Didn’t the two find operations take linear
time instead of logarithmic?

 What about the amortized O(log n)
guarantee?

The guarantee still holds

 We must take into account the previous steps
used to create this tree.

 The analysis says that some operations may be
linear, but they average out in the long run

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 64

Why Splaying Helps

If a node k on the access path is at depth d
before the splay

 It’s at about depth d/2 after the splay

Overall, nodes which are low on the access
path tend to move closer to the root

Importantly, we fix up/balance the tree every
time we do an expensive (deep) access

 This gives splaying its amortized O(log n)
performance (Maybe not now, but soon,
and for the rest of the operations)

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 65

Further Practical Benefits of Splaying

No heights to maintain/No imbalances to check

 Less storage per node

 Easier to code (seriously!)

Data accessed once is often soon accessed again

 Splaying does implicit caching to the root

 This important idea is known as locality

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 66

Splay Operations: find

1. Find the node in normal BST manner

2. Splay the node to the root

 if node not found, splay what would have
been the node's parent

What if we didn’t splay?

 The amortized guarantee would fail!

 Consider this sequence with k not in tree:
find(k), find(k), find(k), …

 Splaying would make the second find(k) a
constant time operation

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 67

Splay Operations: Insert

To insert, could do an ordinary BST insert

 That would not fix up tree

 A BST insert followed by a find and splay?

Better idea: Splay before the insert!

 How? A combination of find and split

 What's split?

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 68

Splitting in Binary Search Trees

split(T, x) creates from T two BSTs L and R:

 All elements of T are in either subtree
L or R (T = L  R)

 All elements in L are  x

 All elements in R are  x

 L and R share no elements (L  R = )

T R L

x

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 69

Splay Operations: Split

To split, do a find on x:

 If x is in T, then splay x to the root

 Otherwise splay the last node found to the root

 After splaying split the tree at the root

T

OR

L R

 x > x

x

L R

 x < x

x

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 70

Back to Insert

insert(x):

 Split on x

 Join subtrees using x as root

T L R

< x > x

x

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 71

Insert Example: insert(5)

9 1

6

4 7

2

split(5)

9

6

7

1

4

2

1

4

2

9

6

7

1

4

2

9

6

7

5

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 72

Splay Operations: Delete

The other operations splayed, so we’d
better do that for delete as well

delete(x):

 find x and splay to root

 if x is there, remove it

 …?

Now what?

T L R

< x > x

x

find(x)

L R

< x > x

delete x

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 73

Join Operation

Join(L, R) merges two trees L < R

 Splay on the maximum element in L
then attach R

Similar to BST delete:
find max = find element with no right child

L R

splay

max in L
L R L R

join

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 74

Splay Operations: Delete

delete(x):

 find x and splay to root

 if x is there, remove it

 join the resulting subtrees

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 75

Delete Example: delete(4)

9 1

6

4 7

2

find(4)

9

6

7

1

4

2

1

2

9

6

7

2

1

9

6

7

2

1

9

6

7

Find max

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 76

B TREES

Technically, they are called B+ trees but their name was
lowered due to concerns of grade inflation

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 77

Reality Bites

Despite our best efforts, AVL trees and
splay trees can perform poorly on very
large inputs

Why? It's the fault of hardware!

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 78

A Typical Memory Hierarchy

Main memory: 2GB = 231

L2 Cache: 2MB = 221

Disk: 1TB = 240

L1 Cache: 128KB = 217

CPU instructions (e.g., addition): 230/sec

get data in L1: 229/sec = 2 insns

get data in L2: 225/sec = 30 insns

get data in main memory:

222/sec = 250 insns

get data from “new place” on disk:

27/sec =8,000,000 insns

“streamed”: 218/sec

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 79

Moral of The Story

It is much faster to do:

 5 million arithmetic ops

 2500 L2 cache accesses

 400 main memory accesses

Than:

1 disk access

1 disk access

1 disk access

Accessing the disk is
EXPENSIVE!!!

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 80

Why are computers built this way?

 Physical realities of speed of light and relative
closeness to CPU

 Cost (price per byte of different technologies)

 Disks get much bigger not much faster

 7200 RPM spin is slow compared to RAM

 Disks unlikely to spin faster in the future

 Solid-state drives are faster than disks but still
slower due to distance, write performance, etc.

 Speedups at higher levels generally make
lower levels relatively slower

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 81

Dealing with Latency

Moving data up the memory hierarchy is slow
because of latency

We can do better by grabbing surrounding
memory with each request

 It is easy to do since we are there anyways

 Likely to be asked for soon (locality of reference)

As defined by the operating system:

 Amount moved from disk to memory is called block
or page size

 Amount moved from memory to cache is called the
line size

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 82

M-ary Search Tree

Perfect tree of height h has (Mh+1-1)/(M-1) nodes

hops for find: Use logM n to calculate

 If M=256, that’s an 8x improvement

 If n = 240, only 5 levels instead of 40 (5 disk accesses)

Runtime of find if balanced: O(log2 M logM n)

Build a search tree with branching factor M:

 Have an array of sorted children (Node[])

 Choose M to fit snugly into a disk block (1 access for array)

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 83

Problems with M-ary Search Trees

 What should the order property be?

 How would you rebalance (ideally
without more disk accesses)?

 Any “useful” data at the internal nodes
takes up disk-block space without being
used by finds moving past it

 Use the branching-factor idea, but for a
different kind of balanced tree
 Not a binary search tree

 But still logarithmic height for any M > 2

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 84

B+ Trees (will just say “B Trees”)

Two types of nodes:

 Internal nodes and leaf nodes

Each internal node has room for
up to M-1 keys and M children

 All data are at the leaves!

Order property:

 Subtree between x and y
Data that is  x and < y

 Notice the 

Leaf has up to L sorted
data items

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 85

As usual, we will focus
only on the keys in

our examples

3 7 12 21

x<3 3x<7 21x 12x<21 7x<12

B Tree Find

We are used to data at internal nodes

But find is still an easy root-to-leaf algorithm

 At an internal node, binary search on the M-1 keys

 At the leaf do binary search on the  L data items

To ensure logarithmic
running time, we need
to guarantee balance!

What should the balance condition be?

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 86

3 7 12 21

x<3 3x<7 21x 12x<21 7x<12

Structure Properties

Root (special case)

 If tree has  L items, root is a leaf (occurs when
starting up, otherwise very unusual)

 Otherwise, root has between 2 and M children

Internal Node

 Has between M/2 and M children (at least half full)

Leaf Node

 All leaves at the same depth

 Has between L/2 and L items (at least half full)

Any M > 2 and L will work

 Picked based on disk-block size

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 87

Example

Suppose: M=4 (max # children in internal node)
 L=5 (max # data items at leaf)

 All internal nodes have at least 2 children

 All leaves at same depth with at least 3 data items

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 88

6

8

9

10

12

14

16

17

20

22

27

28

32

34

38

39

41

44

47

49

50

60

70

19

24

1

2

4

12 44

6 20 27 34 50

Example

Note on notation:

 Inner nodes drawn horizontally

 Leaves drawn vertically to distinguish

 Includes all empty cells

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 89

6

8

9

10

12

14

16

17

20

22

27

28

32

34

38

39

41

44

47

49

50

60

70

19

24

1

2

4

12 44

6 20 27 34 50

Balanced enough

Not hard to show height h is logarithmic in number of
data items n

Let M > 2 (if M = 2, then a list tree is legal  BAD!)

Because all nodes are at least half full (except root
may have only 2 children) and all leaves are at the
same level, the minimum number of data items n for
a height h>0 tree is…

 n  2 M/2 h-1 ⋅ L/2

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 90

minimum number
of leaves

minimum data
per leaf

Exponential in height
because M/2 > 1

What makes B trees so disk friendly?

Many keys stored in one internal node

 All brought into memory in one disk access

 But only if we pick M wisely

 Makes the binary search over M-1 keys worth it
(insignificant compared to disk access times)

Internal nodes contain only keys

 Any find wants only one data item; wasteful

to load unnecessary items with internal nodes

 Only bring one leaf of data items into memory

 Data-item size does not affect what M is

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 91

Maintaining Balance

So this seems like a great data structure

It is

But we haven’t implemented the other
dictionary operations yet

 insert

 delete

As with AVL trees, the hard part is
maintaining structure properties

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 92

Building a B-Tree

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 93

The empty B-Tree
(the root will be a
leaf at the beginning)

Insert(3) Insert(18)

Insert(14)

 3 3

18

3

14

18

Simply need to
keep data sorted

M = 3 L = 3

Insert(30)

3

14

18

3

14

18

M = 3 L = 3

30

3

14

18

30

18

???

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 94

Building a B-Tree

When we ‘overflow’ a leaf, we split it into 2 leaves

 Parent gains another child

 If there is no parent, we create one

How do we pick the new key?

 Smallest element in right subtree

Insert(32)
3

14

18

30

18

3

14

18

30

18

3

14

18

30

18

Insert(36)

3

14

18

30

18

Insert(15)

32

32

36

32

32

36

32

15

Split leaf
 again

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 95

M = 3 L = 3

Insert(16)

3

14

15

18

30

18 32

32

36

3

14

15

18

30

18 32

32

36

16

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 96

M = 3 L = 3

18

30

18 32

32

36

3

14

15

16

15

15 32

18

Split the internal node
(in this case, the root)

???

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 97

M = 3 L = 3

Insert(12,40,45,38)

3

14

15

16

15

18

30

32

32

36

18

3

12

14

15

16

15

18

30

32 40

32

36

38

18

40

45

Given the leaves and the structure of the tree, we
can always fill in internal node keys using the rule:

 What is the smallest value in my right branch?

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 98

M = 3 L = 3

Insertion Algorithm

1. Insert the data in its leaf in sorted order

2. If the leaf now has L+1 items, overflow!

a. Split the leaf into two nodes:

 Original leaf with (L+1)/2 smaller items

 New leaf with (L+1)/2 = L/2 larger items

b. Attach the new child to the parent

 Adding new key to parent in sorted order

3. If Step 2 caused the parent to have M+1

children, overflow the parent!

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 99

Insertion Algorithm (cont)

4. If an internal node (parent) has M+1 kids

a. Split the node into two nodes

 Original node with (M+1)/2 smaller items

 New node with (M+1)/2 = M/2 larger items

b. Attach the new child to the parent

 Adding new key to parent in sorted order

Step 4 could make the parent overflow too

 Repeat up the tree until a node does not overflow

 If the root overflows, make a new root with two

children. This is the only the tree height inceases

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 100

Worst-Case Efficiency of Insert

Find correct leaf:

Insert in leaf:

Split leaf:

Split parents all the way to root:

Total

O(log2 M logM n)

O(L)

O(L)

O(M logM n)

O(L + M logM n)

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 101

But it’s not that bad:

 Splits are rare (only if a node is FULL)

 M and L are likely to be large

 After a split, nodes will be half empty

 Splitting the root is thus extremely rare

 Reducing disk accesses is name of the game:
inserts are thus O(logM n) on average

Adoption for Insert

We can sometimes avoid splitting via a
process called adoption

Example:

 Notice correction by changing parent keys

 Implementation not necessary for efficiency

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 102

3

14

18

30

18

3

14

30

31

30

insert(31)

32 18 32

delete(32)

3

12

14

15

16

15

18

30

32 40

32

36

38

18

40

45

3

12

14

15

16

15

18

30

36 40

18

40

45

Deletion

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 103

36

38

M = 3 L = 3

delete(15)

3

12

14

15

16

15

18

30

36 40

36

38

18

40

45

3

12

14

16

16

18

30

36 40

36

38

18

40

45

Are we okay? Dang, not half full

Are you using that 14?

Can I borrow it?

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 104

M = 3 L = 3

3

12

14

16

14

18

30

36 40

36

38

18

40

45

3

12

14

16

16

18

30

36 40

36

38

18

40

45

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 105

M = 3 L = 3

delete(16)

3

12

14

16

14

18

30

36 40

36

38

18

40

45

14

18

30

36 40

36

38

18

40

45

3

12

14

Are you using that 12? Yes

Are you using that 18? Yes

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 106

M = 3 L = 3

3

12

14

18

30

36 40

36

38

18

40

45

14

18

30

36 40

36

38

18

40

45

3

12

14

Oops. Not enough leaves

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 107

M = 3 L = 3

Well, let's just consolidate our
leaves since we have the room

Are you using that 18/30?

3

12

14

18

30

36 40

36

38

18

40

45

3

12

14

18

18

30

40

36

38

36

40

45

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 108

M = 3 L = 3

delete(14)

3

12

14

18

18

30

40

36

38

36

40

45

3

12

18

18

30

40

36

38

36

40

45

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 109

M = 3 L = 3

delete(18)

3

12

18

18

30

40

36

38

36

40

45

3

12

18

30

40

36

38

36

40

45

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 110

M = 3 L = 3

Oops. Not enough leaves

3

12

30

40

36

38

36

40

45

3

12

18

30

40

36

38

36

40

45

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 111

M = 3 L = 3

We will borrow as before Oh no. Not enough leaves
and we cannot borrow!

3

12

30

40

36

38

36

40

45

36 40

3

12

30

3

36

38

40

45

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 112

M = 3 L = 3

We have to move up a node and collapse into a new root.

36 40

3

12

30

36

38

40

45

36 40

3

12

30

3

36

38

40

45

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 113

M = 3 L = 3

Huh, the root is pretty small. Let's reduce the tree's height.

Deletion Algorithm

1. Remove the data from its leaf

2. If the leaf now has L/2 - 1, underflow!

 If a neighbor has >L/2 items,
adopt and update parent

 Else merge node with neighbor

 Guaranteed to have a legal number of items
L/2  + L/2 = L

 Parent now has one less node

1. If Step 2 caused parent to have

M/2 - 1 children, underflow!

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 114

Deletion Algorithm

4. If an internal node has M/2 - 1 children

 If a neighbor has >M/2 items, adopt and
update parent

 Else merge node with neighbor

 Guaranteed to have a legal number of items

 Parent now has one less node, may need to
continue underflowing up the tree

Fine if we merge all the way up to the root

 If the root went from 2 children to 1, delete
the root and make child the root

 This is the only case that decreases tree height

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 115

Worst-Case Efficiency of Delete

Find correct leaf:

Insert in leaf:

Split leaf:

Split parents all the way to root:

Total

O(log2 M logM n)

O(L)

O(L)

O(M logM n)

O(L + M logM n)

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 116

But it’s not that bad:

 Merges are not that common

 After a merge, a node will be over half full

 Reducing disk accesses is name of the game:
deletions are thus O(logM n) on average

Implementing B Trees in Java?

Assuming our goal is efficient number of disk

accesses, Java was not designed for this

This is not a programming languages course

Still, it is worthwhile to know enough about “how

Java works” and why this is probably a bad idea

for B trees

The key issue is extra levels of indirection…

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 117

Naïve Approach

Even if we assume data items have int keys, you
cannot get the data representation you want for
“really big data”

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 118

interface Keyed<E> {

 int key(E);

}

class BTreeNode<E implements Keyed<E>> {

 static final int M = 128;

 int[] keys = new int[M-1];

 BTreeNode<E>[] children = new BTreeNode[M];

 int numChildren = 0;

 …

}

class BTreeLeaf<E> {

 static final int L = 32;

 E[] data = (E[])new Object[L];

 int numItems = 0;

 …

}

What that looks like

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 119

BTreeNode (3 objects with “header words”)

70

BTreeLeaf (data objects not in contiguous memory)

20

… (larger array)

… (larger array)

L … (larger array)

M-1 12 40

M-1 12 40

The moral

The point of B trees is to keep related data in
contiguous memory

All the red references on the previous slide are
inappropriate

 As minor point, beware the extra “header words”

But that is “the best you can do” in Java

 Again, the advantage is generic, reusable code

 But for your performance-critical web-index,
not the way to implement your B-Tree for terabytes
of data

Other languages better support “flattening objects
into arrays”

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 120

FINAL THOUGHTS

Did we actually get here in one lecture?

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 121

Conclusion: Balanced Trees

Balanced trees make good dictionaries
because they guarantee logarithmic-time
find, insert, and delete

 Essential and beautiful computer science

 But only if you can maintain balance within the
time bound and the underlying computer
architecture

Another great balanced tree which we sadly
will not cover (but easy to read about)

 Red-black trees: all leaves have depth within a
factor of 2

July 2, 2012 CSE 332 Data Abstractions, Summer 2012 122

