
Name: UW NetID:

CSE332 Summer 2012 Midterm Exam, July 18, 2012
SOLUTIONS!

Please do not turn the page until the bell rings.

Rules:

– The exam is closed-book and limited-note. You are permitted a single, handwritten 3x5 index card of
notes. You must turn in this card with your exam.

– Calculators are also permitted but not necessary.

– Please stop promptly at 12:20.

– You can rip apart the pages, but please staple them back together before you leave.

– Blank paper for extra room are available upon request.

– This exam contains 10 questions (many with multiple parts). There are 110 points total, but the exam
is worth 100 points, meaning that you may earn some extra points.

Advice:

– The questions are not necessarily in order of difficulty. Read through the entire exam first and then
skip around as you see fit. Make sure you get to all the problems.

– Read questions carefully. Understand a question before you start writing.

– Write down thoughts and intermediate steps to earn partial credit. Circle your final answer.

– If you have questions, ask.

– Relax. You are here to learn.

EXAM SCORE / 100

1

2

1. (14 pts) Algorithmic Analysis
The following questions all refer to big-O, big-Θ, and big-Ω notation and algorithmic analysis. For parts
(a) and (b), you will need to provide [dis]proof of the bounds. For parts (c)-(l), you only need to write
down the asked-for bound in the underlined area. Each bound should be as tight and simple as possible

(a) Prove (give a c and n0) or disprove that 5n2−20n+3 is O(n3)

True. For c = 1 and n0 > 5, the following is true for n > n0: 5n2−20n+3 < 5n2 < n3 as n > 5

(b) Prove (give a c and n0) or disprove that 23n is O(2n)

False. 23n = 2n2n2n which will clearly always be bigger than 2n for any n > 0.

(c) What is the tightest bound you can give for f (n) = 2n3−3n logn ? (c) Θ(n3)

(d) What is the tightest bound that you can give for the summation
n

∑
i=0

ik ? (d) Θ(nk+1)

(e) What is the worst-case performance for a building a binary min-heap of
n items without using a call to BuildHeap? (e) O(n logn)

(f) What is the big-O bound for performing find in a perfect BST? (f) O(logn)

(g) What is the tightest bound you can give for deletion in an unsorted array
(ignoring the cost of finding the element to delete)? (g) O(1)

(h) What is the average time for insertion in a B tree with M = 32 and L = 8? (h) O(log32 n)

(i) What is the worst-case time for insertion into a 5-heap? (i) O(log5 n)

(j) What is the worst-case time for a single call to enqueue in an
array-based queue? (j) O(n)

(k) What is the amortized time for enqueue in an array-based queue? (k) O(1)

(l) What is the run-time for the following code? (l) O(n logn)
for(i=1; i<n; i++) {

x = n;
while (x > 0) {

sum++;
x = x / 2;

}
}

3

4

2. (8 pts) Recurrence Relations
For this problem you will be working with the following recurrence relation:

T (n) =

 4 n = 1

T (n) = 4+4T (bn
2c) n > 1

(a) Show the values for T (n) for all integers in the range 1≤ n≤ 8

(b) Provide the closed form for T (n). Show your work; do not just show the final equation. You may
assume n is sufficiently large such that the floor function does not lead to rounding issues.

Solution:

(a) Values of T (n) for 1≤ n≤ 8
T (1) = 4 T (5) = 4+4 ·T (2) = 4+4 ·20 = 84
T (2) = 4+4 ·T (1) = 4+4 ·4 = 20 T (6) = 4+4 ·T (3) = 4+4 ·20 = 84
T (3) = 4+4 ·T (1) = 4+4 ·4 = 20 T (7) = 4+4 ·T (3) = 4+4 ·20 = 84
T (4) = 4+4 ·T (2) = 4+4 ·20 = 84 T (8) = 4+4 ·T (4) = 4+4 ·84 = 340

(b) We will solve this through the common repeated substitution method:

T (
n
2
) = 4+4T (bn

4
c)

implies

T (n) = 4+4 · (4+4T (bn
4
c))

= 4+42 +42 ·T (bn
4
c)

Repeating this substitution gives:

T (n) = 4+42 +43 + · · ·+4k +4k ·T (n
2k)

Letting k = blog2 nc, then

T (n) = 4+42 +43 + · · ·+4k +4k ·T (1)
= 4+42 +43 + · · ·+4k +4k ·4
= 4 · (1+4+42 + · · ·+4k)

= 4 · 4
k+1−1

3

=
4
3
· (4 ·4k−1)

=
4
3
· (4 ·4blog2 nc−1)

=
16 ·4blog2 nc−4

3

5

6

3. (10 pts) Move-to-Front Structure
The splay tree’s idea of moving recently touched elements to positions that are more easily fetched can
be applied to other data structure. In particular, consider a linear data structure (i.e., not a tree) called
MoveToFront. MoveToFront provides the following functionality:

– insert(x): The item x is inserted at the front of MoveToFront.

– find(x): Returns true or f alse depending on if x is currently in MoveToFront. After a call to find, x is
move to the front so that it will be accessed first on the next find.

– remove(x): Removes element x from the structure. Other than this removal, the ordering of the other
elements remains unchanged.

For this question, you need to do the following:

(a) Provide a description of how you would implement MoveToFront. Provide pseudocode for both
insert and find. You do NOT need to implement remove. Your pseudocode should be clear and
unambiguous but does not need to be exact Java code.

(b) Provide a brief justification for your design decisions.

(c) Describe the best AND worst case performance for both insert AND find.

You may make any assumptions you feel are necessary as long as you state them in your writeup.

Solution 1: Singly-Linked List

(a) We will use a singly-linked list for implementing MoveToFront.

void insert(x) {
Node n = new Node(x)
if(this.isEmpty())

this.head = n
else

n.next = this.head
this.head = n

}

boolean find(x) {
if(n.key == x)

return true
Node n = this.head, prev = null
while(n != null && n.key != x)

prev = n
n = n.next

if(n == null)
return false

prev.next = n.next
n.next = head
head = n
return true

}

(b) Using a linked list was chosen because inserting at the head automatically shifts everything to the
left. Moreover, swapping a node to the front just requires rearranging a few links. Thus, the second
item in a list will always be the one previously inserted or found before the last.

(c) Insert is Θ(1) for best and worst time as it is just an insert. Find is at best O(1) if the item is at or
near the front of the list but is at worst O(n) if the find has to iterate through the entire list.

7

Solution 2: Array

(a) We will use an unsorted array for implementing MoveToFront. To do insert, we will move the
current front of the array to the end and then insert the new item there. For find, we will just swap
the positions.

void insert(x) {
if(this.size == arr.length)

ResizeArray()
arr[this.size] = arr[0]
arr[0] = x
this.size += 1

}

boolean find(x) {
for(i=0; i < arr.length; i++)

if(arr[i] == x)
swap arr[0] and arr[i]
return true

return false
}

(b) The array implementation was chosen as it is conservative in space due to no need for pointers. By
swapping the first position and the end makes insert constant time. This does break recent locality
by moving recent things to the end. It’s not exactly like a splay tree. However, if we shifted the
array insert would become O(n).

(c) Insert is O(1) for best and worst time when amortized as it is just a simple swap. Resizing will
push the worst time for insert to O(n) rarely. Find is at best O(1) if the item is at or near the front
of the array but is at worst O(n) if the find has to iterate over the unsorted array.

Solution 3: Circular Array

(a) We will use an unsorted circular array for implementing MoveToFront.

void insert(x) {
if(this.size == arr.length−1)

ResizeArray()
this. f ront = (this. f ront - 1) % arr.length
arr[this. f ront] = x
this.size += 1

}

boolean find(x) {
for(i= f ront; i != this.back; i = (i+1)%arr.length)

if(arr[i] == x)
this. f ront = (this. f ront - 1) % arr.length
move arr[i] to arr[f ront]
shift contents of array to fill hole at arr[i]
return true

return false
}

(b) The array implementation was chosen as it is conservative in space. By making the array circular,
we can insert at the front and maintain recency without having to shift everything. Since find is at
worst a linear time operation, having to shift the content is not too bad (especially since we can
always shift to f ront or back and thereby only have to shift at most half of the array. The circular
code is more complex, however. In particular, for the find code to be simpler, we need to make
sure that the array always as at least one empty index. Otherwise, the f ront − 1 step in find will
overwrite a value. Thus, we resize when the current array has arr.length−1 items.

(c) Insert is O(1) in general unless there is a resize. In those rare circumstances, the performance
becomes O(n). Find is at best O(1) if the item is at or near the front of the array even if we have
to shift a few items. In general, though, it will be O(n) because it has to both iterate over the entire
array and may have to shift n

2 of the array elements.

8

4. (10 pts) Min-Heaps
For this question, you will be working with binary min-heaps.

(a) What are the two properties required by a heap?

(b) Draw the heap produced by BuildHeap() given the following sequence of keys:

15, 29, 3, 8, 11, 35, 25, 57, 7, 1, 44, 16

(c) Using your answer from (b), draw the heap after a call to deleteMin()

(d) Using your answer from (c), draw the heap after a call to insert(6)

(e) Using your answer from (d), show the array representation for the heap.

Solution

(a) The heap must be a complete tree and it must meet the property that for every node in the heap, its
key is less or equal to the key’s of its children (for a min-heap that is).

(b) 1

7

8

57 15

11

29 44

3

16

35

25

(c) 3

7

8

57 15

11

29 44

16

35 25

(d) 3

7

8

57 15

11

29 44

6

16

35

25

(e)
0 1 2 3 4 5 6 7 8 9 10 11 12

3 7 6 8 11 16 25 57 15 29 44 35

9

10

5. (14 pts) AVL Trees

21

14

9

35

30

25 32

52

41 64

(a) What is the balance for the following nodes in
the AVL tree: 14, 21, 35, and 41?

(b) Show the AVL tree after inserting 3 into the
provided tree.

(c) Show the AVL tree after inserting 36 into your
answer from (b).

(d) Show the AVL tree after inserting 70 into your
answer from (c).

(e) Show the AVL tree after deleting 52 from your
answer from (d). Your deletion should use the
immediate predecessor for replacement.

(f) Show the AVL tree after deleting 36 from your
answer from (e). Your deletion should use the
immediate predecessor for replacement.Solution

(a) Balances are as follows using the formula: height(left child)−height(right child)
balance(14) = 0− (-1) = 1 balance(35) = 2−2 = 0
balance(21) = 1−2 = -1 balance(41) = (-1)− (-1) = 0

(b) 21

9

3 14

35

30

25 32

52

41 64

(c) 35

21

9

3 14

30

25 32

52

41

36

64

(d) 35

21

9

3 14

30

25 32

52

41

36

64

70

(e) 35

21

9

3 14

30

25 32

41

36 64

70

(f) 35

21

9

3 14

30

25 32

64

41 70

11

12

6. (10 pts) AVL Confirmation
Give pseudocode for a O(n) algorithm that veries that an AVL tree is correctly maintained. Assume every
node has fields key, data, height, left, and right and that keys can be compared with <, ==, and >. The
algorithm should verify all of the following:

– The tree is a binary search tree

– The height information of every node is correct

– Every node is balanced

Solution

We will write a recursive function to do this.

boolean AVLConfirm(Node n) {
if(n == null)

return true

if(n.le f t == null && n.right == null // n is a leaf
return (n.height == 0)

// Check left subchild recursively, check BST property, grab its height
int leftHeight = -1
if(n.le f t != null)

if(! AVLConfirm(n.le f t))
return false

if(n.key < n.le f t.key)
return false

leftHeight = n.le f t.height

// Check right subchild recursively, check BST property, grab its height
int rightHeight = -1
if(n.right != null)

if(! AVLConfirm(n.right))
return false

if(n.key > n.right.key)
return false

rightHeight = n.right.height

// check height and balance
if(max(le f tHeight, rightHeight) + 1 != n.height)

return false
return (abs(le f tHeight− rightHeight)≤ 1)

}

13

14

7. (6 pts) Splay Trees

13

6

3

24

17

20

18 21

42

(a) Show the splay tree after a call to find(20).

(b) Using your answer from (a), show the splay
tree after a call to insert insert(8). You should
use the find/split approach for inserting.

(c) Using your answer (c), show the splay tree
after a call to delete(17). Your should use the
find/join approach for deletion and use the max
from the left subtree for replacement.

Solution

(a) 20

13

6

3

17

18

24

21 42

(b) 8

6

3

13

20

17

18

24

21 42

(c) 13

8

6

3

20

18 24

21 42

15

16

8. (10 pts) Splay Tree Range Restrict
A common enhancement to the Dictionary ADT is RangeRestrict(x,y). This method constrains the
dictionary to only contain keys between x and y inclusive. In other words, it removes all nodes whose
keys are < x or > y.

For this question, you are to provide pseudocode for how you would implement RangeRestrict(x,y) in
a splay tree. You may assume that the splay tree class is a subclass of a general binary search tree class.
The BST class has implementations of insert, find, remove, findMax, findMin, findPredecessorOf, and
findSuccessorOf. The Splay class implements its own versions of insert, find, and remove. Thus, you
may use any of the standard splay tree operations or their BST equivalents (i.e., be sure to state if you are
using BSTfind or SplayFind). Your solution should be efficient and correct.

It is up to you to decide how to handle situations where y≥ x.

If you make any further assumptions, be sure to state them clearly.

Solution

The primary idea here is that if you make a call to find(x), the splay tree moves x to the root. At this
point, you can simply cut off the left subtree and thereby complete half of the range restrict. The same
idea applies if you do a call to find(y) and then cut off the right subtreee.

The catch however is that neither x nor y may be in the tree so that means you have account for those
situations. On failure, find in a splay tree will bring the last node search to the root. However, the root
may be less than or greater than the value you searched for. What we need to do is to make sure that we
cut off the correct branches at the correct point.

Here are two approaches

Approach 1: Predecessor/Successor

void RangeRestrict(x, y) {
if y > x

throw and exception

Node n = root
Search down tree from n to find key x
if(x is not found) // n is currently the last node searched

while(n.key < x)
n = this.findSuccessorOf (n)

// n now either contains x or has the smallest key in the tree that is gerater than x
splay n to the root
set n.left to null

Search down tree from n/root to find key y
if(y is not found) // n is currently the last node searched

while(n.key > y)
n = this.findPredecessorOf (n)

// n now either contains y or has the largest key less than y
splay n to the root
set n.right to null

}

17

The above code is missing checks for if n is null but delivers the basic idea. We could also make the
code simpler by doing a check for when x == y which results in either a single node or an empty tree
depending on if x is in the tree (see next answer below).

Approach 2: Elegance

The above is a lot of work and may require multiple calls to the predecessor and successor methods. An
easier approach for handling when either x or y is not in the tree is to insert them, do the splaying trick,
delete the appropriate subtree, and then delete whatever nodes we added in the first place. Presto!

void RangeRestrict(x, y) {
if y > x

throw and exception

if(x == y)
SplayFind(x)
if(this.root.key != x)

this.root = null
else

set this.root.left to null
set this.root.right to null

return
SplayFind(x)
if(this.root.key != x)

SplayInsert(x)
set this.root.left to null
if we inserted x earlier

SplayDelete(x)

SplayFind(y)
if(this.root.key != y)

SplayInsert(y)
set this.root.right to null
if we inserted y earlier

SplayDelete(y)
}

18

9. (10 pts) B Trees
(a) Using the B tree (M = 3 and L = 3) to the right, show the

resulting tree after inserting 43.

(b) Using your answer from (a), show the resulting tree after
inserting 17.

(c) Using your answer from (b), show the resulting tree after
inserting 39.

Solution:

(a)

(b)

(c)

19

(d) Using the B tree (M = 3 and L = 3) to the right, show the
resulting tree after deleting 57.

(e) Using your answer from (d), show the resulting tree after
deleting 5.

(d)

(e)

20

10. (18 pts) Hash Tables
For each of the following versions of hash tables, insert the following elements in this order:

34, 16, 45, 53, 6, 29, 37, 78, and 1

For each table, TableSize = 11, and you should use the primary hash function h(k) = k%11. If an item
cannot be inserted into the table, please indicate this and continue inserting the remaining values.

For double hashing, the secondary hash is g(k) = 1+(k/4)%T , where T is the table size.

For separate chaining, insert at the front of the list.

Linear Probing

0

1 34

2 45

3 78

4 37

5 16

6 6

7 29

8 1

9 53

10

Quadratic Probing

0

1 34

2 45

3

4 37

5 16

6 6

7 29

8

9 53

10 78

1 cannot be inserted

Double Hashing

0

1 34

2 45

3 1

4 37

5 16

6 6

7 29

8

9 53

10 78

Separate Chaining

0 /

1 – 1 – 78 – 45 – 34

2 /

3 /

4 – 37

5 – 16

6 – 6

7 – 29

8 /

9 – 53

10 /

What is the load factor of the hash table using linear probing?
9
11 = 0.818181...

What is the load factor of the hash table using separate chaining?
9
11 = 0.818181...

21

