CSE332: Data Abstractions

Lecture 26: Course Victory Lap

Dan Grossman
Spring 2012



Today

» Rest-of-course logistics: exam, etc.

« Review of main course themes

« Some thoughts on “data structures and threads” together
« Some time for questions and discussion

« Course evaluations

— Thoughtful and constructive feedback deeply appreciated
— (Including what you liked)

Spring 2012 CSE332: Data Abstractions



Final Exam

As also indicated on the web page:

 Next Tuesday, 2:30-4:20

* Intention is to test a subset of the topics in sorting, graphs,
parallelism, concurrency, amortization

— In other words, “stuff not covered by the midterm”

— But as always the course topics build on earlier ones,
especially algorithm analysis

 May need to read and write Java, among other things

Spring 2012 CSE332: Data Abstractions



Grading Schedule

Needs grading:
— Homework 8 [Stanley]
— Project 3 [Tyler]
— Final exam [Dan]

Will let you know when grading is done
— Encourage you to pick up your homework, exam
— But Dan will be out of town June 9-20
« Exams at department front desk during this time?

Spring 2012 CSE332: Data Abstractions



Victory Lap

A victory lap is an extra trip
around the track
— By the exhausted victors
(that’'s us) ©

Review course goals
— Slides from Lecture 1
— What makes CSE332 special

Spring 2012 CSE332: Data Abstractions 5



Thank you!

Big thank-you to your TAs

— Section covers essential software topics and complements
lecture: indispensable in my opinion

— Lots of grading in CSE332: “free response” and “open
design” better for students, harder for TAs

Spring 2012 CSE332: Data Abstractions



Thank you!

And huge thank you to all of you
— Great attitude
— Extraordinarily good class attendance and questions
— Occasionally laughed at stuff ©

Spring 2012 CSE332: Data Abstractions



Now five slides, completely unedited, from Lecture 1
— Hopefully they make more sense now
— Hopefully we succeeded

Spring 2012 CSE332: Data Abstractions



Data Structures + Threads

» About 70% of the course is a “classic data-structures course”
— Timeless, essential stuff
— Core data structures and algorithms that underlie most software
— How to analyze algorithms

» Plus a serious first treatment of programming with multiple threads
— For parallelism: Use multiple processors to finish sooner
— For concurrency: Correct access to shared resources
— Will make many connections to the classic material

Spring 2012 CSE332: Data Abstractions 9



What is 332 Is about

« Deeply understand the basic structures used in all software
— Understand the data structures and their trade-offs
— Rigorously analyze the algorithms that use them (math!)
— Learn how to pick “the right thing for the job”

« EXxperience the purposes and headaches of multithreading

» Practice design, analysis, and implementation

— The elegant interplay of “theory” and “engineering” at the
core of computer science

Spring 2012 CSE332: Data Abstractions

10



Goals

 Be able to make good design choices as a developer, project
manager, etc.

— Reason in terms of the general abstractions that come up in
all non-trivial software (and many non-software) systems

« Be able to justify and communicate your design decisions

Dan’s take:

3 years from now this course will seem like it was a waste of
your time because you can’t imagine not “just knowing” every
main concept in it

— Key abstractions computer scientists and engineers use
almost every day

— A big piece of what separates us from others

Spring 2012 CSE332: Data Abstractions 11



Data structures

(Often highly non-obvious) ways to organize information to enable
efficient computation over that information

— Key goal over the next week is introducing asymptotic
analysis to precisely and generally describe efficient use of
time and space

A data structure supports certain operations, each with a:
— Meaning: what does the operation do/return
— Performance: how efficient is the operation

Examples:
— List with operations insert and delete

— Stack with operations push and pop

Spring 2012 CSE332: Data Abstractions 12



Trade-offs

A data structure strives to provide many useful, efficient operations

But there are unavoidable trade-offs:
— Time vs. space
— One operation more efficient if another less efficient
— Generality vs. simplicity vs. performance

That is why there are many data structures and educated CSEers
Internalize their main trade-offs and techniques

— And recognize logarithmic < linear < quadratic < exponential

Spring 2012 CSE332: Data Abstractions 13



Now thoughts on teaching parallelism and concurrency in this class
— Something | have vigorously advocated personally
— And it seems to be working

Spring 2012 CSE332: Data Abstractions 14



Background

« “Old” data structures course taught more data structures and
algorithms

— Splay trees, leftist heaps, skew heaps, disjoint-set, network
flow, ...

 Threads are way more important than they used to be

« “Data structures” is not what most faculty would think of for the
“best place to fit it”...

Spring 2012 CSE332: Data Abstractions

15



The fit

Hopefully it did not seem to odd to you, because:

« Work, span, Amdahl’'s Law are about asymptotics

» Fork-join is great for divide-and-conquer

« Sequential cutoffs are like quicksort/insertion-sort cutoffs
« ADTs need critical sections

* Queues motivate passive waiting

... (several more examples)

Other main thesis: emphasize parallelism vs. concurrency distinction
— Not always widely appreciated
— Often mixed in practice

Spring 2012 CSE332: Data Abstractions 16



Seems to work

e (CSE332 instructors at UW

« Parts of materials picked up by 8 other schools so far
— So please keep reporting typos, especially in reading notes

* A paper at SIGCSE2012 (main CS Education Conference)

Spring 2012

Introducing Parallelism and Concurrency in the
Data Structures Course

Dan Grossman Ruth E. Anderson
Dept. of Computer Science & Engineering
University of Washington
Seattle, WA, USA

dig@cs.washington.edu rea@cs.washington.edu

ABSTRACT the near term. many institutions may find it equally unrealistic to.
on the one hand. modify many courses so that multithreading
pervades the curniculum or, on the other hand. add an entire
required course. Instead. our approach has been to use part of a
S o St SECERE B SR SSCRIGEEITOAR et ae SRR Lo

We report on our experience integrating a three-week
introduction to multithreading in a required data structures
course for second-year computer science majors. We emphasize

CSE332: Data Abstractions

17



Last slide

What do you think was good about 3327

What could be improved?

And:

Don’t be a stranger: let me know how the rest of your time in
CSE (and beyond!) goes... | really do like to know

Spring 2012 CSE332: Data Abstractions

18



