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“Scheduling note” 

• “We now return to our interrupted program” on graphs 
– Last “graph lecture” was lecture 17 

• Shortest-path problem 
• Dijkstra’s algorithm for graphs with non-negative weights 

 
• Why this strange schedule? 

– Needed to do parallelism and concurrency in time for project 
3 and homeworks 6 and 7 

– But cannot delay all of graphs because of the CSE312 co-
requisite 
 
 

• So: not the most logical order, but hopefully not a big deal 
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Spanning Trees 

• A simple problem: Given a connected  graph G=(V,E), find a 
minimal subset of the edges such that the graph is still connected 
– A graph G2=(V,E2) such that G2 is connected and removing 

any edge from E2 makes G2 disconnected 
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Observations 

1. Any solution to this problem is a tree 
– Recall a tree does not need a root; just means acyclic 
– For any cycle, could remove an edge and still be connected 

 
2. Solution not unique unless original graph was already a tree 

 
3. Problem ill-defined if original graph not connected 

 
4. A tree with |V| nodes has |V|-1 edges 

– So every solution to the spanning tree problem has |V|-1 
edges 
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Motivation 

A spanning tree connects all the nodes with as few edges as possible 
 

• Example: A “phone tree” so everybody gets the message and no 
unnecessary calls get made 
– Bad example since would prefer a balanced tree 

 

In most compelling uses, we have a weighted  undirected graph and 
we want a tree of least total cost  

• Example: Electrical wiring for a house or clock wires on a chip 
• Example: A road network if you cared about asphalt cost rather 

than travel time 
 

This is the minimum spanning tree problem 
– Will do that next, after intuition from the simpler case 
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Two Approaches 

Different algorithmic approaches to the spanning-tree problem: 
 
1. Do a graph traversal (e.g., depth-first search, but any traversal 

will do), keeping track of edges that form a tree 
 

2. Iterate through edges; add to output any edge that does not 
create a cycle 
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Spanning tree via DFS 
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spanning_tree(Graph G) { 
  for each node i: i.marked = false 
  for some node i: f(i) 
} 
f(Node i) { 
  i.marked = true 
  for each j adjacent to i: 
   if(!j.marked) { 
      add(i,j) to output 
      f(j) // DFS 
    } 
} 
   

Correctness: DFS reaches each node.  We add one edge to connect it 
 to the already visited nodes.  Order affects result, not correctness. 
 

Time: O(|E|) 

Example 

Stack 
f(1) 
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Example 

Stack 
f(1) 
f(2) 
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Output:  (1,2) 

Example 

Stack 
f(1) 
f(2) 
f(7) 
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Output:  (1,2), (2,7) 

Example 

Stack 
f(1) 
f(2) 
f(7) 
f(5) 
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Output:  (1,2), (2,7), (7,5) 

Example 

Stack 
f(1) 
f(2) 
f(7) 
f(5) 
f(4) 
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Output:  (1,2), (2,7), (7,5), (5,4) 



Example 

Stack 
f(1) 
f(2) 
f(7) 
f(5) 
f(4) 
f(3) 
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Output:  (1,2), (2,7), (7,5), (5,4),(4,3) 

Example 

Stack 
f(1) 
f(2) 
f(7) 
f(5) 
f(4)  f(6) 
f(3) 
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Output:  (1,2), (2,7), (7,5), (5,4), (4,3), (5,6) 

Example 

Stack 
f(1) 
f(2) 
f(7) 
f(5) 
f(4)  f(6) 
f(3) 
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Output:  (1,2), (2,7), (7,5), (5,4), (4,3), (5,6) 

Second Approach 

Iterate through edges; output any edge that does not create a cycle 
 
Correctness (hand-wavy): 

– Goal is to build an acyclic connected graph 
– When we add an edge, it adds a vertex to the tree  

• Else it would have created a cycle 
– The graph is connected, so we reach all vertices 

 
Efficiency: 

– Depends on how quickly you can detect cycles 
– Reconsider after the example 
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Example 

Edges in some arbitrary order: 
  (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 
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Output: 

Example 

Edges in some arbitrary order: 
  (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 
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Output: (1,2) 



Example 

Edges in some arbitrary order: 
  (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 
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Output: (1,2), (3,4) 

Example 

Edges in some arbitrary order: 
  (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 
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Output: (1,2), (3,4), (5,6),  

Example 

Edges in some arbitrary order: 
  (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 
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Output: (1,2), (3,4), (5,6), (5,7)  

Example 

Edges in some arbitrary order: 
  (1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 
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Output: (1,2), (3,4), (5,6), (5,7), (1,5)  

Example 

Edges in some arbitrary order: 
  (1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 
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Output: (1,2), (3,4), (5,6), (5,7), (1,5)  

Example 

Edges in some arbitrary order: 
  (1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 
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Output: (1,2), (3,4), (5,6), (5,7), (1,5)  



Example 

Edges in some arbitrary order: 
  (1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 
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Output: (1,2), (3,4), (5,6), (5,7), (1,5), (2,3)  

Can stop once we 
have |V|-1 edges 

Cycle Detection 

• To decide if an edge could form a cycle is O(|V|) because we 
may need to traverse all edges already in the output 
 

• So overall algorithm would be O(|V||E|) 
 

• But there is a faster way using the disjoint-set ADT 
– Initially, each item is in its own 1-element set 
– find(u,v): are u and v in the same set?  
– union(u,v): union (combine) the sets containing u and v 

 
 (Operations often presented slightly differently) 

 
 

Spring 2012 26 CSE332: Data Abstractions 

Using Disjoint-Set 

Can use a disjoint-set implementation in our spanning-tree 
algorithm to detect cycles: 

 

Invariant:  u and v are connected in output-so-far  
     iff  
        u and v in the same set 
 
• Initially, each node is in its own set 
• When processing edge (u,v): 

– If  find(u,v), then do not add the edge 
– Else add the edge and union(u,v) 
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Why Do This? 

• Using an ADT someone else wrote is easier than writing your 
own cycle detection 
 

• It is also more efficient 
 

• Chapter 8 of your textbook gives several implementations of 
different sophistication and asymptotic complexity 
– A slightly clever and easy-to-implement one is O(log n) for 
find and union (as we defined the operations here) 

– Lets our spanning tree algorithm be O(|E|log|V|) 
 

[We skipped disjoint-sets as an example of “sometimes knowing-
an-ADT-exists and you-can-learn-it-on-your-own suffices”] 
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Summary So Far 

The spanning-tree problem 
– Add nodes to partial tree approach is O(|E|) 
– Add acyclic edges approach is O(|E| log |V|) 

• Using the disjoint-set ADT “as a black box” 
 

But really want to solve the minimum-spanning-tree problem 
– Given a weighted undirected graph, give a spanning tree of 

minimum weight 
– Same two approaches will work with minor modifications 
– Both will be O(|E| log |V|) 
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Getting to the Point 

Algorithm #1 
Shortest-path is to Dijkstra’s Algorithm 

as 
Minimum Spanning Tree is to Prim’s Algorithm 

(Both based on expanding cloud of known vertices, basically using 
a priority queue instead of a DFS stack) 

 
Algorithm #2 

Kruskal’s Algorithm for Minimum Spanning Tree 
is 

Exactly our 2nd approach to spanning tree  
but process edges in cost order 
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Prim’s Algorithm Idea 

Idea: Grow a tree by adding an edge from the “known” vertices to 
the “unknown” vertices.  Pick the edge with the smallest weight 
that connects “known” to “unknown.” 

 

 
Recall Dijkstra “picked edge with closest known distance to source”  

– That is not what we want here 
– Otherwise identical 
– Compare to slides in lecture 17 if you do not believe me 
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The Algorithm 
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1. For each node v, set  v.cost = �� and v.known = false 
2. Choose any node v  

a) Mark v as known 
b) For each edge (v,u) with weight w, set u.cost=w and 

u.prev=v 
3. While there are unknown nodes in the graph 

a) Select the unknown node v with lowest cost 
b) Mark v as known and add (v, v.prev) to output 
c) For each edge (v,u) with weight w, 
      if(w < u.cost) { 
          u.cost = w; 
     u.prev = v; 
      } 
  

Example 
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Example 
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Example 
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A Y 0 
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Analysis 

• Correctness ??  
– A bit tricky 
– Intuitively similar to Dijkstra 

 
 

• Run-time 
– Same as Dijkstra 
– O(|E| log |V|) using a priority queue 
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Kruskal’s Algorithm 

Idea: Grow a forest out of edges that do not grow a cycle, just like 
for the spanning tree problem.   
– But now consider the edges in order by weight 

 

So:  
– Sort edges: O(|E|log |E|) 
– Iterate through edges using union-find for cycle detection 

O(|E| log |V|) 
 

Somewhat better: 
– Floyd’s algorithm to build min-heap with edges O(|E|) 
– Iterate through edges using union-find for cycle detection 

and deleteMin to get next edge O(|E| log |V|) 
– Not better worst-case asymptotically, but often stop long 

before considering all edges 
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Pseudocode 

1. Sort edges by weight (better: put in min-heap) 
2. Each node in its own set 
3. While output size < |V|-1 

– Consider next smallest edge (u,v) 
– if find(u,v) indicates u and v are in different sets 

•  output (u,v) 
•  union(u,v) 

 
Recall invariant:  
 u and v in same set if and only if connected in output-so-far 
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Example  
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Edges in sorted order: 
1:  (A,D), (C,D), (B,E), (D,E) 
2:  (A,B), (C,F), (A,C) 
3:  (E,G) 
5:  (D,G), (B,D) 
6:  (D,F) 
10: (F,G) 

Output: 

Note: At each step, the union/find sets are the trees in the forest 

Example  
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Edges in sorted order: 
1:  (A,D), (C,D), (B,E), (D,E) 
2:  (A,B), (C,F), (A,C) 
3:  (E,G) 
5:  (D,G), (B,D) 
6:  (D,F) 
10: (F,G) 

Output: (A,D) 

Note: At each step, the union/find sets are the trees in the forest 

Example  
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Edges in sorted order: 
1:  (A,D), (C,D), (B,E), (D,E) 
2:  (A,B), (C,F), (A,C) 
3:  (E,G) 
5:  (D,G), (B,D) 
6:  (D,F) 
10: (F,G) 

Output: (A,D), (C,D) 

Note: At each step, the union/find sets are the trees in the forest 

Example  
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Edges in sorted order: 
1:  (A,D), (C,D), (B,E), (D,E) 
2:  (A,B), (C,F), (A,C) 
3:  (E,G) 
5:  (D,G), (B,D) 
6:  (D,F) 
10: (F,G) 

Output: (A,D), (C,D), (B,E) 

Note: At each step, the union/find sets are the trees in the forest 

Example  
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Edges in sorted order: 
1:  (A,D), (C,D), (B,E), (D,E) 
2:  (A,B), (C,F), (A,C) 
3:  (E,G) 
5:  (D,G), (B,D) 
6:  (D,F) 
10: (F,G) 

Output: (A,D), (C,D), (B,E), (D,E) 

Note: At each step, the union/find sets are the trees in the forest 



Example  
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Edges in sorted order: 
1:  (A,D), (C,D), (B,E), (D,E) 
2:  (A,B), (C,F), (A,C) 
3:  (E,G) 
5:  (D,G), (B,D) 
6:  (D,F) 
10: (F,G) 

Output: (A,D), (C,D), (B,E), (D,E) 

Note: At each step, the union/find sets are the trees in the forest 

Example  
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Edges in sorted order: 
1:  (A,D), (C,D), (B,E), (D,E) 
2:  (A,B), (C,F), (A,C) 
3:  (E,G) 
5:  (D,G), (B,D) 
6:  (D,F) 
10: (F,G) 

Output: (A,D), (C,D), (B,E), (D,E), (C,F) 

Note: At each step, the union/find sets are the trees in the forest 

Example  
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Edges in sorted order: 
1:  (A,D), (C,D), (B,E), (D,E) 
2:  (A,B), (C,F), (A,C) 
3:  (E,G) 
5:  (D,G), (B,D) 
6:  (D,F) 
10: (F,G) 

Output: (A,D), (C,D), (B,E), (D,E), (C,F) 

Note: At each step, the union/find sets are the trees in the forest 

Example  
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Edges in sorted order: 
1:  (A,D), (C,D), (B,E), (D,E) 
2:  (A,B), (C,F), (A,C) 
3:  (E,G) 
5:  (D,G), (B,D) 
6:  (D,F) 
10: (F,G) 

Output: (A,D), (C,D), (B,E), (D,E), (C,F), (E,G) 

Note: At each step, the union/find sets are the trees in the forest 

Correctness 

Kruskal’s algorithm is clever, simple, and efficient 
– But does it generate a minimum spanning tree? 
– How can we prove it? 

 
First: it generates a spanning tree 

– Intuition: Graph started connected and we added every edge 
that did not create a cycle 

– Proof by contradiction: Suppose u and v are disconnected in 
Kruskal’s result.  Then there’s a path from u to v in the initial 
graph with an edge we could add without creating a cycle.  
But Kruskal would have added that edge.  Contradiction. 
 

Second: There is no spanning tree with lower total cost… 
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The inductive proof set-up 

Let F (stands for “forest”) be the set of edges Kruskal has added at 
some point during its execution. 

 
Claim: F is a subset of one or more MSTs for the graph 

– Therefore, once |F|=|V|-1, we have an MST 
 
Proof: By induction on |F| 
 

  Base case: |F|=0: The empty set is a subset of all MSTs 
 
  Inductive case: |F|=k+1: By induction, before adding the (k+1)th 

edge (call it e), there was some MST T such that F-{e} �� T … 
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Staying a subset of some MST 

Two disjoint cases:  
• If {e} �� T: Then F � T and we’re done 
• Else e forms a cycle with some simple path (call it p) in T 

– Must be since T is a spanning tree 
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Claim: F is a subset of one or 
more MSTs for the graph 

 
So far:    F-{e} � T:   

Staying a subset of some MST 

• There must be an edge e2 on p such that e2 is not in F   
– Else Kruskal would not have added e 

 
• Claim: e2.weight == e.weight 
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Claim: F is a subset of one or 
more MSTs for the graph 

 
So far:    F-{e} � T and  
     e forms a cycle with p � T 

e 

Staying a subset of some MST 

• Claim: e2.weight == e.weight 
– If e2.weight > e.weight, then T is not an MST because  

 T-{e2}+{e} is a spanning tree with lower cost: contradiction 
– If e2.weight < e.weight, then Kruskal would have already 

considered e2.  It would have added it since T has no cycles 
and F-{e} �� T.  But e2 is not in F: contradiction  
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Claim: F is a subset of one or 
more MSTs for the graph 

 
So far:    F-{e} � T  
   e forms a cycle with p � T  
   e2 on p is not in F 

e 
e2 

Staying a subset of some MST 

• Claim:  T-{e2}+{e} is an MST 
– It is a spanning tree because p-{e2}+{e} connects the same 

nodes as p 
– It is minimal because its cost equals cost of T, an MST 

• Since F �� T-{e2}+{e},   F is a subset of one or more MSTs  
Done 
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Claim: F is a subset of one or 
more MSTs for the graph 

 
So far:    F-{e} � T  
   e forms a cycle with p � T  
   e2 on p is not in F 
   e2.weight == e.weight 
 

e 
e2 


