
CSE332: Data Abstractions

Lecture 24: Minimum Spanning Trees

Dan Grossman
Spring 2012

“Scheduling note”

• “We now return to our interrupted program” on graphs
– Last “graph lecture” was lecture 17

• Shortest-path problem
• Dijkstra’s algorithm for graphs with non-negative weights

• Why this strange schedule?

– Needed to do parallelism and concurrency in time for project
3 and homeworks 6 and 7

– But cannot delay all of graphs because of the CSE312 co-
requisite

• So: not the most logical order, but hopefully not a big deal

Spring 2012 2 CSE332: Data Abstractions

Spanning Trees

• A simple problem: Given a connected graph G=(V,E), find a
minimal subset of the edges such that the graph is still connected
– A graph G2=(V,E2) such that G2 is connected and removing

any edge from E2 makes G2 disconnected

Spring 2012 3 CSE332: Data Abstractions

Observations

1. Any solution to this problem is a tree
– Recall a tree does not need a root; just means acyclic
– For any cycle, could remove an edge and still be connected

2. Solution not unique unless original graph was already a tree

3. Problem ill-defined if original graph not connected

4. A tree with |V| nodes has |V|-1 edges

– So every solution to the spanning tree problem has |V|-1
edges

Spring 2012 4 CSE332: Data Abstractions

Motivation

A spanning tree connects all the nodes with as few edges as possible

• Example: A “phone tree” so everybody gets the message and no
unnecessary calls get made
– Bad example since would prefer a balanced tree

In most compelling uses, we have a weighted undirected graph and
we want a tree of least total cost

• Example: Electrical wiring for a house or clock wires on a chip
• Example: A road network if you cared about asphalt cost rather

than travel time

This is the minimum spanning tree problem
– Will do that next, after intuition from the simpler case

Spring 2012 5 CSE332: Data Abstractions

Two Approaches

Different algorithmic approaches to the spanning-tree problem:

1. Do a graph traversal (e.g., depth-first search, but any traversal

will do), keeping track of edges that form a tree

2. Iterate through edges; add to output any edge that does not
create a cycle

Spring 2012 6 CSE332: Data Abstractions

Spanning tree via DFS

Spring 2012 7 CSE332: Data Abstractions

spanning_tree(Graph G) {
 for each node i: i.marked = false
 for some node i: f(i)
}
f(Node i) {
 i.marked = true
 for each j adjacent to i:
 if(!j.marked) {
 add(i,j) to output
 f(j) // DFS
 }
}

Correctness: DFS reaches each node. We add one edge to connect it
 to the already visited nodes. Order affects result, not correctness.

Time: O(|E|)

Example

Stack
f(1)

Spring 2012 8 CSE332: Data Abstractions

1
2

3

4

5

6

7

Output:

Example

Stack
f(1)
f(2)

Spring 2012 9 CSE332: Data Abstractions

1
2

3

4

5

6

7

Output: (1,2)

Example

Stack
f(1)
f(2)
f(7)

Spring 2012 10 CSE332: Data Abstractions

1
2

3

4

5

6

7

Output: (1,2), (2,7)

Example

Stack
f(1)
f(2)
f(7)
f(5)

Spring 2012 11 CSE332: Data Abstractions

1
2

3

4

5

6

7

Output: (1,2), (2,7), (7,5)

Example

Stack
f(1)
f(2)
f(7)
f(5)
f(4)

Spring 2012 12 CSE332: Data Abstractions

1
2

3

4

5

6

7

Output: (1,2), (2,7), (7,5), (5,4)

Example

Stack
f(1)
f(2)
f(7)
f(5)
f(4)
f(3)

Spring 2012 13 CSE332: Data Abstractions

1
2

3

4

5

6

7

Output: (1,2), (2,7), (7,5), (5,4),(4,3)

Example

Stack
f(1)
f(2)
f(7)
f(5)
f(4) f(6)
f(3)

Spring 2012 14 CSE332: Data Abstractions

1
2

3

4

5

6

7

Output: (1,2), (2,7), (7,5), (5,4), (4,3), (5,6)

Example

Stack
f(1)
f(2)
f(7)
f(5)
f(4) f(6)
f(3)

Spring 2012 15 CSE332: Data Abstractions

1
2

3

4

5

6

7

Output: (1,2), (2,7), (7,5), (5,4), (4,3), (5,6)

Second Approach

Iterate through edges; output any edge that does not create a cycle

Correctness (hand-wavy):

– Goal is to build an acyclic connected graph
– When we add an edge, it adds a vertex to the tree

• Else it would have created a cycle
– The graph is connected, so we reach all vertices

Efficiency:

– Depends on how quickly you can detect cycles
– Reconsider after the example

Spring 2012 16 CSE332: Data Abstractions

Example

Edges in some arbitrary order:
 (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Spring 2012 17 CSE332: Data Abstractions

1
2

3

4

5

6

7

Output:

Example

Edges in some arbitrary order:
 (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Spring 2012 18 CSE332: Data Abstractions

1
2

3

4

5

6

7

Output: (1,2)

Example

Edges in some arbitrary order:
 (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Spring 2012 19 CSE332: Data Abstractions

1
2

3

4

5

6

7

Output: (1,2), (3,4)

Example

Edges in some arbitrary order:
 (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Spring 2012 20 CSE332: Data Abstractions

1
2

3

4

5

6

7

Output: (1,2), (3,4), (5,6),

Example

Edges in some arbitrary order:
 (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Spring 2012 21 CSE332: Data Abstractions

1
2

3

4

5

6

7

Output: (1,2), (3,4), (5,6), (5,7)

Example

Edges in some arbitrary order:
 (1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Spring 2012 22 CSE332: Data Abstractions

1
2

3

4

5

6

7

Output: (1,2), (3,4), (5,6), (5,7), (1,5)

Example

Edges in some arbitrary order:
 (1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Spring 2012 23 CSE332: Data Abstractions

1
2

3

4

5

6

7

Output: (1,2), (3,4), (5,6), (5,7), (1,5)

Example

Edges in some arbitrary order:
 (1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Spring 2012 24 CSE332: Data Abstractions

1
2

3

4

5

6

7

Output: (1,2), (3,4), (5,6), (5,7), (1,5)

Example

Edges in some arbitrary order:
 (1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Spring 2012 25 CSE332: Data Abstractions

1
2

3

4

5

6

7

Output: (1,2), (3,4), (5,6), (5,7), (1,5), (2,3)

Can stop once we
have |V|-1 edges

Cycle Detection

• To decide if an edge could form a cycle is O(|V|) because we
may need to traverse all edges already in the output

• So overall algorithm would be O(|V||E|)

• But there is a faster way using the disjoint-set ADT
– Initially, each item is in its own 1-element set
– find(u,v): are u and v in the same set?
– union(u,v): union (combine) the sets containing u and v

 (Operations often presented slightly differently)

Spring 2012 26 CSE332: Data Abstractions

Using Disjoint-Set

Can use a disjoint-set implementation in our spanning-tree
algorithm to detect cycles:

Invariant: u and v are connected in output-so-far
 iff
 u and v in the same set

• Initially, each node is in its own set
• When processing edge (u,v):

– If find(u,v), then do not add the edge
– Else add the edge and union(u,v)

Spring 2012 27 CSE332: Data Abstractions

Why Do This?

• Using an ADT someone else wrote is easier than writing your
own cycle detection

• It is also more efficient

• Chapter 8 of your textbook gives several implementations of
different sophistication and asymptotic complexity
– A slightly clever and easy-to-implement one is O(log n) for
find and union (as we defined the operations here)

– Lets our spanning tree algorithm be O(|E|log|V|)

[We skipped disjoint-sets as an example of “sometimes knowing-
an-ADT-exists and you-can-learn-it-on-your-own suffices”]

Spring 2012 28 CSE332: Data Abstractions

Summary So Far

The spanning-tree problem
– Add nodes to partial tree approach is O(|E|)
– Add acyclic edges approach is O(|E| log |V|)

• Using the disjoint-set ADT “as a black box”

But really want to solve the minimum-spanning-tree problem
– Given a weighted undirected graph, give a spanning tree of

minimum weight
– Same two approaches will work with minor modifications
– Both will be O(|E| log |V|)

Spring 2012 29 CSE332: Data Abstractions

Getting to the Point

Algorithm #1
Shortest-path is to Dijkstra’s Algorithm

as
Minimum Spanning Tree is to Prim’s Algorithm

(Both based on expanding cloud of known vertices, basically using
a priority queue instead of a DFS stack)

Algorithm #2

Kruskal’s Algorithm for Minimum Spanning Tree
is

Exactly our 2nd approach to spanning tree
but process edges in cost order

 Spring 2012 30 CSE332: Data Abstractions

Prim’s Algorithm Idea

Idea: Grow a tree by adding an edge from the “known” vertices to
the “unknown” vertices. Pick the edge with the smallest weight
that connects “known” to “unknown.”

Recall Dijkstra “picked edge with closest known distance to source”

– That is not what we want here
– Otherwise identical
– Compare to slides in lecture 17 if you do not believe me

Spring 2012 31 CSE332: Data Abstractions

The Algorithm

Spring 2012 32 CSE332: Data Abstractions

1. For each node v, set v.cost = �� and v.known = false
2. Choose any node v

a) Mark v as known
b) For each edge (v,u) with weight w, set u.cost=w and

u.prev=v
3. While there are unknown nodes in the graph

a) Select the unknown node v with lowest cost
b) Mark v as known and add (v, v.prev) to output
c) For each edge (v,u) with weight w,
 if(w < u.cost) {
 u.cost = w;
 u.prev = v;
 }

Example

Spring 2012 33 CSE332: Data Abstractions

A B

C
D

F

E

G

�

�

�

�
�

�

2

1
2

vertex known? cost prev
A ??
B ??
C ??
D ??
E ??
F ??
G ??

5

1
1

1

2 6
5 3

10

�

Example

Spring 2012 34 CSE332: Data Abstractions

A B

C
D

F

E

G

0 2

�

2

1
�

�

2

1
2

vertex known? cost prev
A Y 0
B 2 A
C 2 A
D 1 A
E ??
F ??
G ??

5

1
1

1

2 6
5 3

10

Example

Spring 2012 35 CSE332: Data Abstractions

A B

C
D

F

E

G

0 2

6

2

1
1

5

2

1
2

vertex known? cost prev
A Y 0
B 2 A
C 1 D
D Y 1 A
E 1 D
F 6 D
G 5 D

5

1
1

1

2 6
5 3

10

Example

Spring 2012 36 CSE332: Data Abstractions

A B

C
D

F

E

G

0 2

2

2

1
1

5

2

1
2

vertex known? cost prev
A Y 0
B 2 A
C Y 1 D
D Y 1 A
E 1 D
F 2 C
G 5 D

5

1
1

1

2 6
5 3

10

Example

Spring 2012 37 CSE332: Data Abstractions

A B

C
D

F

E

G

0 1

2

2

1
1

3

2

1
2

vertex known? cost prev
A Y 0
B 1 E
C Y 1 D
D Y 1 A
E Y 1 D
F 2 C
G 3 E

5

1
1

1

2 6
5 3

10

Example

Spring 2012 38 CSE332: Data Abstractions

A B

C
D

F

E

G

0 1

2

2

1
1

3

2

1
2

vertex known? cost prev
A Y 0
B Y 1 E
C Y 1 D
D Y 1 A
E Y 1 D
F 2 C
G 3 E

5

1
1

1

2 6
5 3

10

Example

Spring 2012 39 CSE332: Data Abstractions

A B

C
D

F

E

G

0 1

2

2

1
1

3

2

1
2

vertex known? cost prev
A Y 0
B Y 1 E
C Y 1 D
D Y 1 A
E Y 1 D
F Y 2 C
G 3 E

5

1
1

1

2 6
5 3

10

Example

Spring 2012 40 CSE332: Data Abstractions

A B

C
D

F

E

G

0 1

2

2

1
1

3

2

1
2

vertex known? cost prev
A Y 0
B Y 1 E
C Y 1 D
D Y 1 A
E Y 1 D
F Y 2 C
G Y 3 E

5

1
1

1

2 6
5 3

10

Analysis

• Correctness ??
– A bit tricky
– Intuitively similar to Dijkstra

• Run-time
– Same as Dijkstra
– O(|E| log |V|) using a priority queue

Spring 2012 41 CSE332: Data Abstractions

Kruskal’s Algorithm

Idea: Grow a forest out of edges that do not grow a cycle, just like
for the spanning tree problem.
– But now consider the edges in order by weight

So:
– Sort edges: O(|E|log |E|)
– Iterate through edges using union-find for cycle detection

O(|E| log |V|)

Somewhat better:
– Floyd’s algorithm to build min-heap with edges O(|E|)
– Iterate through edges using union-find for cycle detection

and deleteMin to get next edge O(|E| log |V|)
– Not better worst-case asymptotically, but often stop long

before considering all edges
Spring 2012 42 CSE332: Data Abstractions

Pseudocode

1. Sort edges by weight (better: put in min-heap)
2. Each node in its own set
3. While output size < |V|-1

– Consider next smallest edge (u,v)
– if find(u,v) indicates u and v are in different sets

• output (u,v)
• union(u,v)

Recall invariant:
 u and v in same set if and only if connected in output-so-far

Spring 2012 43 CSE332: Data Abstractions

Example

Spring 2012 44 CSE332: Data Abstractions

A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output:

Note: At each step, the union/find sets are the trees in the forest

Example

Spring 2012 45 CSE332: Data Abstractions

A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D)

Note: At each step, the union/find sets are the trees in the forest

Example

Spring 2012 46 CSE332: Data Abstractions

A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D)

Note: At each step, the union/find sets are the trees in the forest

Example

Spring 2012 47 CSE332: Data Abstractions

A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E)

Note: At each step, the union/find sets are the trees in the forest

Example

Spring 2012 48 CSE332: Data Abstractions

A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the forest

Example

Spring 2012 49 CSE332: Data Abstractions

A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the forest

Example

Spring 2012 50 CSE332: Data Abstractions

A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the forest

Example

Spring 2012 51 CSE332: Data Abstractions

A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the forest

Example

Spring 2012 52 CSE332: Data Abstractions

A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F), (E,G)

Note: At each step, the union/find sets are the trees in the forest

Correctness

Kruskal’s algorithm is clever, simple, and efficient
– But does it generate a minimum spanning tree?
– How can we prove it?

First: it generates a spanning tree

– Intuition: Graph started connected and we added every edge
that did not create a cycle

– Proof by contradiction: Suppose u and v are disconnected in
Kruskal’s result. Then there’s a path from u to v in the initial
graph with an edge we could add without creating a cycle.
But Kruskal would have added that edge. Contradiction.

Second: There is no spanning tree with lower total cost…

Spring 2012 53 CSE332: Data Abstractions

The inductive proof set-up

Let F (stands for “forest”) be the set of edges Kruskal has added at
some point during its execution.

Claim: F is a subset of one or more MSTs for the graph

– Therefore, once |F|=|V|-1, we have an MST

Proof: By induction on |F|

 Base case: |F|=0: The empty set is a subset of all MSTs

 Inductive case: |F|=k+1: By induction, before adding the (k+1)th

edge (call it e), there was some MST T such that F-{e} �� T …

Spring 2012 54 CSE332: Data Abstractions

Staying a subset of some MST

Two disjoint cases:
• If {e} �� T: Then F � T and we’re done
• Else e forms a cycle with some simple path (call it p) in T

– Must be since T is a spanning tree

Spring 2012 55 CSE332: Data Abstractions

Claim: F is a subset of one or
more MSTs for the graph

So far: F-{e} � T:

Staying a subset of some MST

• There must be an edge e2 on p such that e2 is not in F
– Else Kruskal would not have added e

• Claim: e2.weight == e.weight

Spring 2012 56 CSE332: Data Abstractions

Claim: F is a subset of one or
more MSTs for the graph

So far: F-{e} � T and
 e forms a cycle with p � T

e

Staying a subset of some MST

• Claim: e2.weight == e.weight
– If e2.weight > e.weight, then T is not an MST because

 T-{e2}+{e} is a spanning tree with lower cost: contradiction
– If e2.weight < e.weight, then Kruskal would have already

considered e2. It would have added it since T has no cycles
and F-{e} �� T. But e2 is not in F: contradiction

Spring 2012 57 CSE332: Data Abstractions

Claim: F is a subset of one or
more MSTs for the graph

So far: F-{e} � T
 e forms a cycle with p � T
 e2 on p is not in F

e
e2

Staying a subset of some MST

• Claim: T-{e2}+{e} is an MST
– It is a spanning tree because p-{e2}+{e} connects the same

nodes as p
– It is minimal because its cost equals cost of T, an MST

• Since F �� T-{e2}+{e}, F is a subset of one or more MSTs
Done
Spring 2012 58 CSE332: Data Abstractions

Claim: F is a subset of one or
more MSTs for the graph

So far: F-{e} � T
 e forms a cycle with p � T
 e2 on p is not in F
 e2.weight == e.weight

e
e2

