
CSE332: Data Abstractions

Lecture 23:
Data Races and Memory Reordering

Deadlock
 Readers/Writer Locks

Condition Variables
Dan Grossman

Spring 2012

Outline

Done:
• Programming with locks and critical sections
• Key guidelines and trade-offs

Now: The other basics an informed programmer needs to know

• Why you must avoid data races (memory reorderings)
• Another common error: Deadlock
• Other common facilities useful for shared-memory concurrency

– Readers/writer locks
– Condition variables, or, more generally, passive waiting

2 CSE332: Data Abstractions Spring 2012

Motivating memory-model issues

Tricky and surprisingly wrong unsynchronized concurrent code

3 CSE332: Data Abstractions

class C {
 private int x = 0;
 private int y = 0;

 void f() {
 x = 1;
 y = 1;
 }
 void g() {
 int a = y;
 int b = x;
 assert(b >= a);
 }
}

First understand why it looks like
the assertion cannot fail:

• Easy case: call to g ends before
any call to f starts

• Easy case: at least one call to f
completes before call to g starts

• If calls to f and g interleave…

Spring 2012

Interleavings

4 CSE332: Data Abstractions Spring 2012

There is no interleaving of f and g where the assertion fails
– Proof #1: Exhaustively consider all possible orderings of

access to shared memory (there are 6)
– Proof #2: If !(b>=a), then a==1 and b==0.

But if a==1, then y=1 happened before a=y.
Because programs execute in order:
 a=y happened before b=x and x=1 happened before y=1.
So by transitivity, b==1. Contradiction.

x = 1;

y = 1;

int a = y;

int b = x;

assert(b >= a);

Thread 1: f Thread 2: g

Wrong

However, the code has a data race
– Two actually
– Recall: data race: unsynchronized read/write or write/write of

same location

If code has data races, you cannot reason about it with interleavings!
– That is simply the rules of Java (and C, C++, C#, …)
– (Else would slow down all programs just to “help” programs with

data races, and that was deemed a bad engineering trade-off
when designing the languages/compilers/hardware)

– So the assertion can fail

Recall Guideline #0: No data races

5 CSE332: Data Abstractions Spring 2012

Why
For performance reasons, the compiler and the hardware often

reorder memory operations
– Take a compiler or computer architecture course to learn why

6 CSE332: Data Abstractions

x = 1;

y = 1;

int a = y;

int b = x;

assert(b >= a);

Thread 1: f Thread 2: g

Of course, you cannot just let them reorder anything they want
• Each thread executes in order after all!
• Consider: x=17; y=x;

Spring 2012

The grand compromise

The compiler/hardware will never perform a memory reordering that
affects the result of a single-threaded program

The compiler/hardware will never perform a memory reordering that

affects the result of a data-race-free multi-threaded program

So: If no interleaving of your program has a data race, then you can

forget about all this reordering nonsense: the result will be
equivalent to some interleaving

Your job: Avoid data races
Compiler/hardware job: Give illusion of interleaving if you do your job

7 CSE332: Data Abstractions Spring 2012

Fixing our example
• Naturally, we can use synchronization to avoid data races

– Then, indeed, the assertion cannot fail

8 CSE332: Data Abstractions

class C {
 private int x = 0;
 private int y = 0;
 void f() {
 synchronized(this) { x = 1; }
 synchronized(this) { y = 1; }
 }
 void g() {
 int a, b;
 synchronized(this) { a = y; }
 synchronized(this) { b = x; }
 assert(b >= a);
 }
}

Spring 2012

A second fix
• Java has volatile fields: accesses do not count as data races
• Implementation: slower than regular fields, faster than locks
• Really for experts: avoid them; use standard libraries instead
• And why do you need code like this anyway?

9 CSE332: Data Abstractions

class C {
 private volatile int x = 0;
 private volatile int y = 0;
 void f() {
 x = 1;
 y = 1;
 }
 void g() {
 int a = y;
 int b = x;
 assert(b >= a);
 }
}

Spring 2012

Code that is wrong

• Here is a more realistic example of code that is wrong
– No guarantee Thread 2 will ever stop
– But honestly it will “likely work in practice”

10 CSE332: Data Abstractions

class C {
 boolean stop = false;
 void f() {
 while(!stop) {
 // draw a monster
 }
 }
 void g() {
 stop = didUserQuit();
 }
}

Thread 1: f()

Thread 2: g()

Spring 2012

Outline

Done:
• Programming with locks and critical sections
• Key guidelines and trade-offs

Now: The other basics an informed programmer needs to know

• Why you must avoid data races (memory reorderings)
• Another common error: Deadlock
• Other common facilities useful for shared-memory concurrency

– Readers/writer locks
– Condition variables

11 CSE332: Data Abstractions Spring 2012

Motivating Deadlock Issues

Consider a method to transfer money between bank accounts

12 CSE332: Data Abstractions

class BankAccount {
 …
 synchronized void withdraw(int amt) {…}
 synchronized void deposit(int amt) {…}
 synchronized void transferTo(int amt,
 BankAccount a) {
 this.withdraw(amt);
 a.deposit(amt);
 }
}

Notice during call to a.deposit, thread holds two locks
– Need to investigate when this may be a problem

Spring 2012

The Deadlock

13 CSE332: Data Abstractions

acquire lock for x
do withdraw from x

block on lock for y

acquire lock for y
do withdraw from y

block on lock for x

Thread 1: x.transferTo(1,y)

Ti
m

e

Suppose x and y are fields holding accounts

Thread 2: y.transferTo(1,x)

Spring 2012

Deadlock, in general

A deadlock occurs when there are threads T1, …, Tn such that:
• For i=1,..,n-1, Ti is waiting for a resource held by T(i+1)
• Tn is waiting for a resource held by T1

In other words, there is a cycle of waiting

– Can formalize as a graph of dependencies with cycles bad

Deadlock avoidance in programming amounts to techniques to
ensure a cycle can never arise

14 CSE332: Data Abstractions Spring 2012

Back to our example

Options for deadlock-proof transfer:

1. Make a smaller critical section: transferTo not synchronized
– Exposes intermediate state after withdraw before deposit
– May be okay, but exposes wrong total amount in bank

2. Coarsen lock granularity: one lock for all accounts allowing
transfers between them
– Works, but sacrifices concurrent deposits/withdrawals

3. Give every bank-account a unique number and always acquire
locks in the same order
– Entire program should obey this order to avoid cycles
– Code acquiring only one lock can ignore the order

15 CSE332: Data Abstractions Spring 2012

Ordering locks

16 CSE332: Data Abstractions

class BankAccount {
 …
 private int acctNumber; // must be unique
 void transferTo(int amt, BankAccount a) {
 if(this.acctNumber < a.acctNumber)
 synchronized(this) {
 synchronized(a) {
 this.withdraw(amt);
 a.deposit(amt);
 }}
 else
 synchronized(a) {
 synchronized(this) {
 this.withdraw(amt);
 a.deposit(amt);
 }}
 }
}

Spring 2012

Another example
From the Java standard library

17 CSE332: Data Abstractions

class StringBuffer {
 private int count;
 private char[] value;
 …
 synchronized append(StringBuffer sb) {
 int len = sb.length();
 if(this.count + len > this.value.length)
 this.expand(…);
 sb.getChars(0,len,this.value,this.count);
 }
 synchronized getChars(int x, int, y,
 char[] a, int z) {
 “copy this.value[x..y] into a starting at z”
 }
}

Spring 2012

Two problems

Problem #1: Lock for sb is not held between calls to sb.length
and sb.getChars
– So sb could get longer
– Would cause append to throw an ArrayBoundsException

Problem #2: Deadlock potential if two threads try to append in
opposite directions, just like in the bank-account first example

Not easy to fix both problems without extra copying:
– Do not want unique ids on every StringBuffer
– Do not want one lock for all StringBuffer objects

Actual Java library: fixed neither (left code as is; changed javadoc)
– Up to clients to avoid such situations with own protocols

18 CSE332: Data Abstractions Spring 2012

Perspective

• Code like account-transfer and string-buffer append are difficult
to deal with for deadlock

• Easier case: different types of objects
– Can document a fixed order among types
– Example: “When moving an item from the hashtable to the

work queue, never try to acquire the queue lock while
holding the hashtable lock”

• Easier case: objects are in an acyclic structure
– Can use the data structure to determine a fixed order
– Example: “If holding a tree node’s lock, do not acquire other

tree nodes’ locks unless they are children in the tree”

 19 CSE332: Data Abstractions Spring 2012

Outline

Done:
• Programming with locks and critical sections
• Key guidelines and trade-offs

Now: The other basics an informed programmer needs to know

• Why you must avoid data races (memory reorderings)
• Another common error: Deadlock
• Other common facilities useful for shared-memory concurrency

– Readers/writer locks
– Condition variables

20 CSE332: Data Abstractions Spring 2012

Reading vs. writing

Recall:
– Multiple concurrent reads of same memory: Not a problem
– Multiple concurrent writes of same memory: Problem
– Multiple concurrent read & write of same memory: Problem

So far:

– If concurrent write/write or read/write might occur, use
synchronization to ensure one-thread-at-a-time

But this is unnecessarily conservative:
– Could still allow multiple simultaneous readers!

21 CSE332: Data Abstractions Spring 2012

Example

Consider a hashtable with one coarse-grained lock
– So only one thread can perform operations at a time

But suppose:

– There are many simultaneous lookup operations
– insert operations are very rare

Note: Important that lookup does not actually mutate shared

memory, like a move-to-front list operation would

22 CSE332: Data Abstractions Spring 2012

Readers/writer locks

A new synchronization ADT: The readers/writer lock

• A lock’s states fall into three categories:
– “not held”
– “held for writing” by one thread
– “held for reading” by one or more threads

• new: make a new lock, initially “not held”
• acquire_write: block if currently “held for reading” or “held for

writing”, else make “held for writing”
• release_write: make “not held”
• acquire_read: block if currently “held for writing”, else

make/keep “held for reading” and increment readers count
• release_read: decrement readers count, if 0, make “not held”

23 CSE332: Data Abstractions

0 � writers � 1
0 � readers
writers*readers==0

Spring 2012

Pseudocode example (not Java)

24 CSE332: Data Abstractions

class Hashtable<K,V> {
 …
 // coarse-grained, one lock for table
 RWLock lk = new RWLock();
 V lookup(K key) {
 int bucket = hasher(key);
 lk.acquire_read();
 … read array[bucket] …
 lk.release_read();
 }
 void insert(K key, V val) {
 int bucket = hasher(key);
 lk.acquire_write();
 … write array[bucket] …
 lk.release_write();
 }
}

Spring 2012

Readers/writer lock details

• A readers/writer lock implementation (“not our problem”) usually
gives priority to writers:
– Once a writer blocks, no readers arriving later will get the

lock before the writer
– Otherwise an insert could starve

• Re-entrant?

– Mostly an orthogonal issue
– But some libraries support upgrading from reader to writer

• Why not use readers/writer locks with more fine-grained locking,

like on each bucket?
– Not wrong, but likely not worth it due to low contention

25 CSE332: Data Abstractions Spring 2012

In Java

Java’s synchronized statement does not support readers/writer

Instead, library
java.util.concurrent.locks.ReentrantReadWriteLock

• Different interface: methods readLock and writeLock return

objects that themselves have lock and unlock methods

• Does not have writer priority or reader-to-writer upgrading
– Always read the documentation

26 CSE332: Data Abstractions Spring 2012

Outline

Done:
• Programming with locks and critical sections
• Key guidelines and trade-offs

Now: The other basics an informed programmer needs to know

• Why you must avoid data races (memory reorderings)
• Another common error: Deadlock
• Other common facilities useful for shared-memory concurrency

– Readers/writer locks
– Condition variables

27 CSE332: Data Abstractions Spring 2012

Motivating Condition Variables

To motivate condition variables, consider the canonical example of a
bounded buffer for sharing work among threads

Bounded buffer: A queue with a fixed size
– (Unbounded still needs a condition variable, but 1 instead of 2)

For sharing work – think an assembly line:
– Producer thread(s) do some work and enqueue result objects
– Consumer thread(s) dequeue objects and do next stage
– Must synchronize access to the queue

 28 CSE332: Data Abstractions

f e d c buffer

back front

producer(s)
enqueue

consumer(s)
dequeue

Spring 2012

Code, attempt 1

29 CSE332: Data Abstractions

class Buffer<E> {
 E[] array = (E[])new Object[SIZE];
 … // front, back fields, isEmpty, isFull methods
 synchronized void enqueue(E elt) {
 if(isFull())
 ???
 else
 … add to array and adjust back …
 }
 synchronized E dequeue()
 if(isEmpty())
 ???
 else
 … take from array and adjust front …
 }
}
 Spring 2012

Waiting

• enqueue to a full buffer should not raise an exception
– Wait until there is room

• dequeue from an empty buffer should not raise an exception
– Wait until there is data

Bad approach is to spin (wasted work and keep grabbing lock)

30 CSE332: Data Abstractions

void enqueue(E elt) {
 while(true) {
 synchronized(this) {
 if(isFull()) continue;
 … add to array and adjust back …
 return;
}}}
// dequeue similar

Spring 2012

What we want

• Better would be for a thread to wait until it can proceed
– Be notified when it should try again
– In the meantime, let other threads run

• Like locks, not something you can implement on your own

– Language or library gives it to you, typically implemented with
operating-system support

• An ADT that supports this: condition variable
– Informs waiter(s) when the condition that causes it/them to

wait has varied

• Terminology not completely standard; will mostly stick with Java

31 CSE332: Data Abstractions Spring 2012

Java approach: not quite right

32 CSE332: Data Abstractions

class Buffer<E> {
 …
 synchronized void enqueue(E elt) {
 if(isFull())
 this.wait(); // releases lock and waits
 add to array and adjust back
 if(buffer was empty)
 this.notify(); // wake somebody up
 }
 synchronized E dequeue() {
 if(isEmpty())
 this.wait(); // releases lock and waits
 take from array and adjust front
 if(buffer was full)
 this.notify(); // wake somebody up
 }
}

Spring 2012

Key ideas

• Java weirdness: every object “is” a condition variable (and a lock)
– other languages/libraries often make them separate

• wait:
– “register” running thread as interested in being woken up
– then atomically: release the lock and block
– when execution resumes, thread again holds the lock

• notify:

– pick one waiting thread and wake it up
– no guarantee woken up thread runs next, just that it is no

longer blocked on the condition – now waiting for the lock
– if no thread is waiting, then do nothing

33 CSE332: Data Abstractions Spring 2012

Bug #1

Between the time a thread is notified and it re-acquires the lock, the
condition can become false again!

34 CSE332: Data Abstractions

synchronized void enqueue(E elt){
 if(isFull())
 this.wait();
 add to array and adjust back
 …
}

if(isFull())
 this.wait();

add to array

Ti
m

e

Thread 2 (dequeue) Thread 1 (enqueue)

take from array
if(was full)

this.notify();

make full again

Thread 3 (enqueue)

Spring 2012

Bug fix #1

Guideline: Always re-check the condition after re-gaining the lock
– In fact, for obscure reasons, Java is technically allowed to

notify a thread spuriously (i.e., for no reason)

35 CSE332: Data Abstractions

synchronized void enqueue(E elt) {
 while(isFull())
 this.wait();
 …
}
synchronized E dequeue() {
 while(isEmpty())
 this.wait();
 …
}

Spring 2012

Bug #2

• If multiple threads are waiting, we wake up only one
– Sure only one can do work now, but can’t forget the others!

36 CSE332: Data Abstractions

while(isFull())
 this.wait();

…

Ti
m

e

Thread 2 (enqueue) Thread 1 (enqueue)

// dequeue #1
if(buffer was full)
 this.notify();

// dequeue #2
if(buffer was full)
 this.notify();

Thread 3 (dequeues)
while(isFull())
 this.wait();

…

Spring 2012

Bug fix #2

notifyAll wakes up all current waiters on the condition variable

Guideline: If in any doubt, use notifyAll
– Wasteful waking is better than never waking up

• So why does notify exist?
– Well, it is faster when correct…

37 CSE332: Data Abstractions

synchronized void enqueue(E elt) {
 …
 if(buffer was empty)
 this.notifyAll(); // wake everybody up
}
synchronized E dequeue() {
 …
 if(buffer was full)
 this.notifyAll(); // wake everybody up
}

Spring 2012

Alternate approach

• An alternative is to call notify (not notifyAll) on every
enqueue / dequeue, not just when the buffer was empty / full
– Easy: just remove the if statement

• Alas, makes our code subtly wrong since it is technically possible
that an enqueue and a dequeue are both waiting
– See notes for the step-by-step details of how this can happen

• Works fine if buffer is unbounded since then only dequeuers wait

38 CSE332: Data Abstractions Spring 2012

Alternate approach fixed

• The alternate approach works if the enqueuers and dequeuers
wait on different condition variables
– But for mutual exclusion both condition variables must be

associated with the same lock

• Java’s “everything is a lock / condition variable” does not
support this: each condition variable is associated with itself

• Instead, Java has classes in java.util.concurrent.locks
for when you want multiple conditions with one lock
– class ReentrantLock has a method newCondition

that returns a new Condition object associate with the lock
– See the documentation if curious

39 CSE332: Data Abstractions Spring 2012

Last condition-variable comments

• notify/notifyAll often called signal/broadcast, also
called pulse/pulseAll

• Condition variables are subtle and harder to use than locks

• But when you need them, you need them
– Spinning and other work-arounds do not work well

• Fortunately, like most things in a data-structures course, the
common use-cases are provided in libraries written by experts
– Example:
java.util.concurrent.ArrayBlockingQueue<E>

– All uses of condition variables hidden in the library; client just
calls put and take

40 CSE332: Data Abstractions Spring 2012

Concurrency summary

• Access to shared resources introduces new kinds of bugs
– Data races
– Critical sections too small
– Critical sections use wrong locks
– Deadlocks

• Requires synchronization
– Locks for mutual exclusion (common, various flavors)
– Condition variables for signaling others (less common)

• Guidelines for correct use help avoid common pitfalls

• Not clear shared-memory is worth the pain
– But other models (e.g., message passing) not a panacea

41 CSE332: Data Abstractions Spring 2012

