

CSE332: Data Abstractions

Lecture 19: Analysis of Fork-Join Parallel Programs

Dan Grossman Spring 2012

Outline

Done:

- How to use fork and join to write a parallel algorithm
- · Why using divide-and-conquer with lots of small tasks is best
 - Combines results in parallel
- Some Java and ForkJoin Framework specifics
 - More pragmatics (e.g., installation) in separate notes

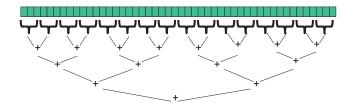
Now:

- More examples of simple parallel programs
- Arrays & balanced trees support parallelism better than linked lists
- Asymptotic analysis for fork-join parallelism
- Amdahl's Law

Spring 2012 CSE332: Data Abstractions

What else looks like this?

- Saw summing an array went from O(n) sequential to O(log n) parallel (assuming a lot of processors and very large n!)
 - Exponential speed-up in theory $(n / \log n)$ grows exponentially)



 Anything that can use results from two halves and merge them in O(1) time has the same property...

Spring 2012 CSE332: Data Abstractions

3

Examples

- · Maximum or minimum element
- Is there an element satisfying some property (e.g., is there a 17)?
- · Left-most element satisfying some property (e.g., first 17)
 - What should the recursive tasks return?
 - How should we merge the results?
- Corners of a rectangle containing all points (a "bounding box")
- · Counts, for example, number of strings that start with a vowel
 - This is just summing with a different base case
 - Many problems are!

Spring 2012 CSE332: Data Abstractions

Reductions

- · Computations of this form are called reductions (or reduces?)
- Produce single answer from collection via an associative operator
 - Examples: max, count, leftmost, rightmost, sum, product, ...
 - Non-examples: median, subtraction, exponentiation
- (Recursive) results don't have to be single numbers or strings.
 They can be arrays or objects with multiple fields.
 - Example: Histogram of test results is a variant of sum
- But some things are inherently sequential
 - How we process arr[i] may depend entirely on the result of processing arr[i-1]

Even easier: Maps (Data Parallelism)

- A map operates on each element of a collection independently to create a new collection of the same size
 - No combining results
 - For arrays, this is so trivial some hardware has direct support
- Canonical example: Vector addition

```
int[] vector add(int[] arr1, int[] arr2){
   assert (arr1.length == arr2.length);
   result = new int[arr1.length];
   FORALL(i=0; i < arr1.length; i++) {
      result[i] = arr1[i] + arr2[i];
   }
   return result;
}</pre>
```

Maps in ForkJoin Framework

```
class VecAdd extends RecursiveAction {
  int lo; int hi; int[] res; int[] arr1; int[] arr2;
  VecAdd(int l,int h,int[] r,int[] al,int[] a2) { ... }
  protected void compute() {
    if(hi - lo < SEQUENTIAL CUTOFF) {
      for(int i=lo; i < hi; i++)
        res[i] = arr1[i] + arr2[i];
    } else {
      int mid = (hi+lo)/2;
      VecAdd left = new VecAdd(lo,mid,res,arr1,arr2);
      VecAdd right= new VecAdd(mid,hi,res,arr1,arr2);
      left.fork();
      right.compute();
      left.join();
    }
}
static final ForkJoinPool fjPool = new ForkJoinPool();
int[] add(int[] arr1, int[] arr2) {
    assert (arr1.length == arr2.length);
int[] ans = new int[arr1.length];
fjPool.invoke(new VecAdd(0,arr.length,ans,arr1,arr2);
    return ans;
}
Spring 2012 CSE332: Data Abstractions</pre>
```

Maps and reductions

Maps and reductions: the "workhorses" of parallel programming

- By far the two most important and common patterns
 - · Two more-advanced patterns in next lecture
- Learn to recognize when an algorithm can be written in terms of maps and reductions
- Use maps and reductions to describe (parallel) algorithms
- Programming them becomes "trivial" with a little practice
 - · Exactly like sequential for-loops seem second-nature

Spring 2012 CSE332: Data Abstractions

Digression: MapReduce on clusters

- You may have heard of Google's "map/reduce"
 - Or the open-source version Hadoop
- · Idea: Perform maps/reduces on data using many machines
 - The system takes care of distributing the data and managing fault tolerance
 - You just write code to map one element and reduce elements to a combined result
- Separates how to do recursive divide-and-conquer from what computation to perform
 - Old idea in higher-order functional programming transferred to large-scale distributed computing
 - Complementary approach to declarative queries for databases

Spring 2012 CSE332: Data Abstractions

9

Trees

- · Maps and reductions work just fine on balanced trees
 - Divide-and-conquer each child rather than array subranges
 - Correct for unbalanced trees, but won't get much speed-up
- Example: minimum element in an unsorted but balanced binary tree in O(log n) time given enough processors
- · How to do the sequential cut-off?
 - Store number-of-descendants at each node (easy to maintain)
 - Or could approximate it with, e.g., AVL-tree height

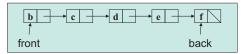
Spring 2012 CSE332: Data Abstractions

10

12

Linked lists

- Can you parallelize maps or reduces over linked lists?
 - Example: Increment all elements of a linked list
 - Example: Sum all elements of a linked list
 - Parallelism still beneficial for expensive per-element operations



- · Once again, data structures matter!
- For parallelism, balanced trees generally better than lists so that we can get to all the data exponentially faster O(log n) vs. O(n)
 - Trees have the same flexibility as lists compared to arrays

Analyzing algorithms

- · Like all algorithms, parallel algorithms should be:
 - Correct
 - Efficient
- For our algorithms so far, correctness is "obvious" so we'll focus on efficiency
 - Want asymptotic bounds
 - Want to analyze the algorithm without regard to a specific number of processors
 - The key "magic" of the ForkJoin Framework is getting expected run-time performance asymptotically optimal for the available number of processors
 - · So we can analyze algorithms assuming this guarantee

Spring 2012 CSE332: Data Abstractions 11 Spring 2012 CSE332: Data Abstractions

Work and Span

Let T_P be the running time if there are P processors available

Two key measures of run-time:

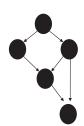
- Work: How long it would take 1 processor = T₁
 - Just "sequentialize" the recursive forking
- Span: How long it would take infinity processors = T_∞
 - The longest dependence-chain
 - Example: O(log n) for summing an array
 - Notice having > n/2 processors is no additional help
 - Also called "critical path length" or "computational depth"

Spring 2012 CSE332: Data Abstractions

13

The DAG

- A program execution using fork and join can be seen as a DAG
 - Nodes: Pieces of work
 - Edges: Source must finish before destination starts



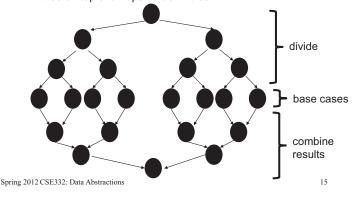
- A fork "ends a node" and makes two outgoing edges
 - · New thread
 - · Continuation of current thread
- A join "ends a node" and makes a node with two incoming edges
 - Node just ended
 - Last node of thread joined on

Spring 2012 CSE332: Data Abstractions

14

Our simple examples

- fork and join are very flexible, but divide-and-conquer maps and reductions use them in a very basic way:
 - A tree on top of an upside-down tree



More interesting DAGs?

- · The DAGs are not always this simple
- · Example:
 - Suppose combining two results might be expensive enough that we want to parallelize each one
 - Then each node in the inverted tree on the previous slide would itself expand into another set of nodes for that parallel computation

Spring 2012 CSE332: Data Abstractions

16

18

Connecting to performance

- Recall: T_P = running time if there are P processors available
- Work = T₁ = sum of run-time of all nodes in the DAG
 - That lonely processor does everything
 - Any topological sort is a legal execution
 - O(n) for simple maps and reductions
- Span = T_∞ = sum of run-time of all nodes on the most-expensive path in the DAG
 - Note: costs are on the nodes not the edges
 - Our infinite army can do everything that is ready to be done, but still has to wait for earlier results
 - O(log n) for simple maps and reductions

Definitions

A couple more terms:

- Speed-up on P processors: T_1 / T_P
- If speed-up is **P** as we vary **P**, we call it perfect linear speed-up
 - Perfect linear speed-up means doubling P halves running time
 - Usually our goal; hard to get in practice
- Parallelism is the maximum possible speed-up: $T_1 \, / \, T_{\, \infty}$
 - At some point, adding processors won't help
 - What that point is depends on the span

Parallel algorithms is about decreasing span without increasing work too much

Spring 2012 CSE332: Data Abstractions 17 Spring 2012 CSE332: Data Abstractions

Optimal T_P: Thanks ForkJoin library!

- So we know T_1 and T_∞ but we want T_P (e.g., P=4)
- Ignoring memory-hierarchy issues (caching), Tp can't beat
 - T_1 / P why not?
 - $-T_{\infty}$ why not?
- So an asymptotically optimal execution would be:

$$T_{P} = O((T_{1}/P) + T_{\infty})$$

- First term dominates for small P, second for large P
- The ForkJoin Framework gives an expected-time guarantee of asymptotically optimal!
 - Expected time because it flips coins when scheduling
 - How? For an advanced course (few need to know)
 - Guarantee requires a few assumptions about your code...

Spring 2012 CSE332: Data Abstractions

19

Division of responsibility

- · Our job as ForkJoin Framework users:
 - Pick a good algorithm, write a program
 - When run, program creates a DAG of things to do
 - Make all the nodes a small-ish and approximately equal amount of work
- · The framework-writer's job:
 - Assign work to available processors to avoid idling
 - · Let framework-user ignore all scheduling issues
 - Keep constant factors low
 - Give the expected-time optimal guarantee assuming framework-user did his/her job

$$T_{P} = O((T_{1}/P) + T_{\infty})$$

Spring 2012 CSE332: Data Abstractions

Examples

$$T_{P} = O((T_{1}/P) + T_{\infty})$$

- In the algorithms seen so far (e.g., sum an array):
 - $T_1 = O(n)$
 - $T_{\infty} = O(\log n)$
 - So expect (ignoring overheads): $T_P = O(n/P + \log n)$
- · Suppose instead:
 - $T_1 = O(n^2)$
 - $-\mathbf{T}_{\infty} = O(n)$
 - So expect (ignoring overheads): $T_P = O(n^2/P + n)$

Spring 2012 CSE332: Data Abstractions

21

Amdahl's Law (mostly bad news)

- · So far: analyze parallel programs in terms of work and span
- In practice, typically have parts of programs that parallelize well...
 - Such as maps/reductions over arrays and trees
 - ...and parts that don't parallelize at all
 - Such as reading a linked list, getting input, doing computations where each needs the previous step, etc.

"Nine women can't make a baby in one month"

Spring 2012 CSE332: Data Abstractions

22

Amdahl's Law (mostly bad news)

Let the work (time to run on 1 processor) be 1 unit time

Let S be the portion of the execution that can't be parallelized

Then: $T_1 = S + (1-S) = 1$

Suppose we get perfect linear speedup on the parallel portion

Then: $T_P = S + (1-S)/P$

So the overall speedup with P processors is (Amdahl's Law):

$$T_1 / T_P = 1 / (S + (1-S)/P)$$

And the parallelism (infinite processors) is:

$$T_1 / T_m = 1 / S$$

Why such bad news

$$T_1 / T_P = 1 / (S + (1-S)/P)$$

$$T_1 / T_{\infty} = 1 / S$$

- Suppose 33% of a program's execution is sequential
 - Then a billion processors won't give a speedup over 3
- Suppose you miss the good old days (1980-2005) where 12ish years was long enough to get 100x speedup
 - Now suppose in 12 years, clock speed is the same but you get 256 processors instead of 1
 - For 256 processors to get at least 100x speedup, we need $100 \le 1 / (\mathbf{S} + (1-\mathbf{S})/256)$

Which means **S** ≤ .0061 (i.e., 99.4% perfectly parallelizable)

Plots you have to see

- 1. Assume 256 processors
 - x-axis: sequential portion S, ranging from .01 to .25
 - y-axis: speedup T₁ / T_P (will go down as S increases)
- 2. Assume **S** = .01 or .1 or .25 (three separate lines)
 - x-axis: number of processors **P**, ranging from 2 to 32
 - y-axis: speedup T₁ / T_P (will go up as P increases)

Do this as a homework problem!

- Chance to use a spreadsheet or other graphing program
- Compare against your intuition
- A picture is worth 1000 words, especially if you made it

Spring 2012 CSE332: Data Abstractions

25

All is not lost

Amdahl's Law is a bummer!

- Unparallelized parts become a bottleneck very quickly
- But it doesn't mean additional processors are worthless
- · We can find new parallel algorithms
 - Some things that seem sequential are actually parallelizable
- · We can change the problem or do new things
 - Example: Video games use tons of parallel processors
 - · They are not rendering 10-year-old graphics faster
 - · They are rendering more beautiful(?) monsters

Spring 2012 CSE332: Data Abstractions

26

Moore and Amdahl

- Moore's "Law" is an observation about the progress of the semiconductor industry
 - Transistor density doubles roughly every 18 months
- · Amdahl's Law is a mathematical theorem
 - Diminishing returns of adding more processors
- · Both are incredibly important in designing computer systems

Spring 2012 CSE332: Data Abstractions

27