
CSE332: Data Abstractions

Lecture 12: Introduction to Sorting

Dan Grossman
Spring 2012

Introduction to Sorting

• Have covered stacks, queues, priority queues, and dictionaries
– All focused on providing one element at a time

• But often we know we want “all the things” in some order
– Humans can sort, but computers can sort fast
– Very common to need data sorted somehow

• Alphabetical list of people
• List of countries ordered by population

• Algorithms have different asymptotic and constant-factor trade-offs

– No single “best” sort for all scenarios
– Knowing one way to sort just isn’t enough

Spring 2012 2 CSE332: Data Abstractions

More Reasons to Sort

General technique in computing:
 Preprocess data to make subsequent operations faster

Example: Sort the data so that you can

– Find the kth largest in constant time for any k
– Perform binary search to find elements in logarithmic time

Whether the performance of the preprocessing matters depends on

– How often the data will change
– How much data there is

Spring 2012 3 CSE332: Data Abstractions

Careful Statement of the Basic Problem

For now, assume we have n comparable elements in an array and
we want to rearrange them to be in increasing order

Input:
– An array A of data records
– A key value in each data record
– A comparison function (consistent and total)

Effect:
– Reorganize the elements of A such that for any i and j,

if i < j then A[i] �� A[j]
– (Also, A must have exactly the same data it started with)

An algorithm doing this is a comparison sort

Spring 2012 4 CSE332: Data Abstractions

Variations on the Basic Problem
1. Maybe elements are in a linked list (could convert to array and

back in linear time, but some algorithms needn’t do so)

2. Maybe ties need to be resolved by “original array position”
– Sorts that do this naturally are called stable sorts
– Others could tag each item with its original position and

adjust comparisons accordingly (non-trivial constant factors)

3. Maybe we must not use more than O(1) “auxiliary space”
– Sorts meeting this requirement are called in-place sorts

4. Maybe we can do more with elements than just compare
– Sometimes leads to faster algorithms

5. Maybe we have too much data to fit in memory
– Use an “external sorting” algorithm

Spring 2012 5 CSE332: Data Abstractions

Sorting: The Big Picture

Surprising amount of juicy computer science over next 2 lectures…

Spring 2012 6 CSE332: Data Abstractions

Simple
algorithms:

O(n2)

Fancier
algorithms:
O(n log n)

Comparison
lower bound:
��(n log n)

Specialized
algorithms:

O(n)

Handling
huge data

sets

Insertion sort
Selection sort
Shell sort
…

Heap sort
Merge sort
Quick sort (avg)
…

Bucket sort
Radix sort

External
sorting

