CSE332 Week 2 Section Worksheet

- 1. Find values for c and n_0 (according to the definition of O()) for f(n) is O(g(n)), where
 - a. f(n)=7n, g(n)=n/10
 - b. f(n)=1000, $g(n)=3n^3$
 - c. $f(n)=7n^2+3n$, $g(n)=n^4$
 - d. $f(n)=n+2n\log n$, $g(n)=n\log n$
- **2.** True or false?
 - a. f(n) is $\Theta(g(n))$ implies f(n) is O(g(n))
 - b. f(n) is $\Theta(g(n))$ implies g(n) is $\Theta(f(n))$
 - c. f(n) is $\Omega(g(n))$ implies f(n) is O(g(n))
- 3. Find functions f(n) and g(n) such that f(n) is O(g(n)) and the constant c for the definition of O() must be >1. That is, find f & g such that c must be greater than 1, as there is no sufficient n_0 when c=1.
- **4.** Write the O() run-time of the functions with the following recurrence relations
 - a. T(n)=3+T(n-1), where T(0)=1
 - b. T(n)=3+T(n/2), where T(1)=1
 - c. T(n)=3+T(n-1)+T(n-1), where T(0)=1
- **5.** Prove by induction that $\sum_{i=0}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$
- **6.** What's the O() run-time of this code fragment in terms of n:
- a. int x=0;
 for(int i=n;i>=0;i--)
 if((i%3)==0) break;
 else x+=n;
- b. int x=0;
 for(int i=0;i<n;i++)
 for(int j=0; j<(n*n/3); j++)
 x+=j;</pre>