CSE332: Final Exam Review
Winter 2011
Final Logistics

- Final on Tuesday, March 15
 - Time: 2:30-4:20pm
 - No notes, no books; calculators ok (but not really needed)
- Info on website under ‘Final Exam’
Topics (short list)

- Sorting
- Graphs
- Parallelization
- Concurrency

- Amortized Analysis not covered
- Material in Midterm NOT covered
Preparing for the Exam

- Homework a good indication of what could be on exam
- Check out previous quarters’ exams
 - 332 exams from last Spring & last Summer
 - 326 ones differ quite a bit
 - Final info site has links
- Make sure you:
 - Understand the key concepts
 - Can perform the key algorithms
Sorting Topics

- Know
 - Insertion & Selection sorts - $O(n^2)$
 - Heap Sort - $O(n \log n)$
 - Merge Sort - $O(n \log n)$
 - Quick Sort - $O(n \log n)$ on average
 - Bucket Sort & Radix Sort

- Know run-times
- Know how to carry out the sort
- Lower Bound for Comparison Sort
 - Cannot do better than $n \log n$
 - Won’t be asked to give full proof
 - But may be asked to use similar techniques
 - Be familiar with the ideas
Mergesort example: Merge as we return from recursive calls

We need another array in which to do each merging step; merge results into there, then copy back to original array.
Graph Topics

- **Graph Basics**
 - Definition; weights; directedness; degree
 - Paths; cycles
 - Connectedness (directed vs undirected)
 - ‘Tree’ in a graph sense
 - DAGs

- **Graph Representations**
 - Adjacency List
 - Adjacency Matrix
 - What each is; how to use it

- **Graph Traversals**
 - Breadth-First
 - Depth-First
 - What data structures are associated with each?
Graph Topics

- Topological Sort
- Dijkstra’s Algorithm
 - Doesn’t play nice with negative weights
- Minimum Spanning Trees
 - Prim’s Algorithm
 - Kruskal’s Algorithm
- Know algorithms
- Know run-times
Dijkstra’s Algorithm Overview

• Given a weighted graph and a vertex in the graph (call it A), find the shortest path from A to each other vertex
 • Cost of path defined as sum of weights of edges
 • Negative edges not allowed

• The algorithm:
 • Create a table like this:
 • Init A’s cost to 0, others infinity (or just ‘??’)
 • While there are unknown vertices:
 • Select unknown vertex w/ lowest cost (A initially)
 • Mark it as known
 • Update cost and path to all unknown vertices adjacent to that vertex
Parallelism

- Fork-join parallelism
 - Know the concept; diff. from making lots of threads
 - Be able to write pseudo-code
 - Reduce: parallel sum, multiply, min, find, etc.
 - Map: bit vector, string length, etc.

- Work & span definitions
- Speed-up & parallelism definitions
- Justification for run-time, given tree
- Justification for ‘halving’ each step
- Amdahl’s Law
- Parallel Prefix
 - Technique
 - Span
 - Uses: Parallel prefix sum, filter, etc.
- Parallel Sorting
Parallelism Overview

- We say it takes time T_P to complete a task with P processors.
- Adding together an array of n elements would take $O(n)$ time, when done sequentially (that is, $P=1$).
 - Called the work; T_1
- If we have ‘enough’ processors, we can do it much faster; $O(\log n)$ time.
 - Called the span; T_∞
Considering Parallel Run-time

Our **fork** and **join** frequently look like this:

• Each node takes $O(1)$ time
• Even the base cases, as they are at the cut-off
• Sequentially, we can do this in $O(n)$ time; $O(1)$ for each node, $\sim 3n$ nodes, if there were no cut-off (linear # on base case row, halved each row up/down)
• Carrying this out in (perfect) parallel will take the time of the longest branch; $\sim 2\log n$, if we halve each time
Some Parallelism Definitions

- **Speed-up** on P processors: $\frac{T_1}{T_P}$

- We often assume perfect linear speed-up
 - That is, $\frac{T_1}{T_P} = P$; with 2x processors, it’s twice as fast
 - ‘Perfect linear speed-up’ usually our goal; hard to get in practice

- **Parallelism** is the maximum possible speed-up: $\frac{T_1}{T_\infty}$
 - At some point, adding processors won’t help
 - What that point is depends on the span
The ForkJoin Framework Expected Performance

If you write your program well, you can get the following expected performance:

\[T_P \leq \left(\frac{T_1}{P} \right) + O(T_{\infty}) \]

- \(T_1/P \) for the overall work split between \(P \) processors
 - \(P=4? \) Each processor takes 1/4 of the total work
- \(O(T_{\infty}) \) for merging results
 - Even if \(P=\infty \), then we still need to do \(O(T_{\infty}) \) to merge results

What does it mean??

- We can get decent benefit for adding more processors; effectively linear speed-up at first (expected)
- With a large # of processors, we’re still bounded by \(T_{\infty} \); that term becomes dominant
Amdahl’s Law

Let the work (time to run on 1 processor) be 1 unit time

Let S be the portion of the execution that cannot be parallelized

Then: \[T_1 = S + (1-S) = 1 \]

Then: \[T_P = S + (1-S)/P \]

Amdahl’s Law: The overall speedup with P processors is:

\[\frac{T_1}{T_P} = \frac{1}{S + (1-S)/P} \]

And the parallelism (infinite processors) is:

\[\frac{T_1}{T_\infty} = \frac{1}{S} \]
Parallel Prefix Sum

- Given an array of numbers, compute an array of their running sums in $O(\log n)$ span
- Requires 2 passes (each a parallel traversal)
 - First is to gather information
 - Second figures out output

<table>
<thead>
<tr>
<th>input</th>
<th>6</th>
<th>4</th>
<th>16</th>
<th>10</th>
<th>16</th>
<th>14</th>
<th>2</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td>6</td>
<td>10</td>
<td>26</td>
<td>36</td>
<td>52</td>
<td>66</td>
<td>68</td>
<td>76</td>
</tr>
</tbody>
</table>
Parallel Prefix Sum

2 passes:
1. Compute ‘sum’
2. Compute ‘fromleft’

input

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>4</td>
<td>16</td>
<td>10</td>
<td>16</td>
</tr>
</tbody>
</table>

output

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>10</td>
<td>26</td>
<td>36</td>
<td>52</td>
</tr>
</tbody>
</table>

2 passes:
1. Compute ‘sum’
2. Compute ‘fromleft’
Parallel Quicksort

2 optimizations:
1. Do the two recursive calls in parallel
 • Now recurrence takes the form:
 \[O(n) + 1T(n/2) \]
 So \(O(n) \) span
2. Parallelize the partitioning step
 • Partitioning normally \(O(n) \) time
 • Recall that we can use Parallel Prefix Sum to ‘filter’ with \(O(\log n) \) span
 • Partitioning can be done with 2 filters, so \(O(\log n) \) span for each partitioning step

These two parallel optimizations bring parallel quicksort to a span of \(O(\log^2 n) \)
Concurrency

- Race conditions
- Data races
- Synchronizing your code
 - Locks, Reentrant locks
 - Java’s ‘synchronize’ statement
 - Readers/writer locks
 - Deadlock
 - Issues of critical section size
 - Issues of lock scheme granularity – coarse vs fine
- Knowledge of bad interleavings
- Condition variables
- Be able to write pseudo-code for Java threads, locks & condition variables
A race condition occurs when the computation result depends on scheduling (how threads are interleaved)

- If T1 and T2 happened to get scheduled in a certain way, things go wrong
- We, as programmers, cannot control scheduling of threads; result is that we need to write programs that work independent of scheduling

Race conditions are bugs that exist only due to concurrency
- No interleaved scheduling with 1 thread

Typically, problem is that some intermediate state can be seen by another thread; screws up other thread
- Consider a ‘partial’ insert in a linked list; say, a new node has been added to the end, but ‘back’ and ‘count’ haven’t been updated
Data Races

- A **data race** is a specific type of **race condition** that can happen in 2 ways:
 - Two different threads can *potentially* write a variable at the same time
 - One thread can *potentially* write a variable while another reads the variable
 - Simultaneous reads are fine; not a data race, and nothing bad would happen
 - ‘Potentially’ is important; we say the code itself has a data race – it is independent of an actual execution
- Data races are bad, but we can still have a race condition, and bad behavior, when no data races are present
Readers/writer locks

A new synchronization ADT: The readers/writer lock

- Idea: Allow any number of readers OR one writer
- This allows more concurrent access (multiple readers)
- A lock’s states fall into three categories:
 - “not held”
 - “held for writing” by one thread
 - “held for reading” by one or more threads

- new: make a new lock, initially “not held”
- acquire_write: block if currently “held for reading” or “held for writing”, else make “held for writing”
- release_write: make “not held”
- acquire_read: block if currently “held for writing”, else make/keep “held for reading” and increment readers count
- release_read: decrement readers count, if 0, make “not held”

0 ≤ writers ≤ 1 && 0 ≤ readers && writers*readers==0
Deadlock

- As illustrated by the ‘The Dining Philosophers’ problem
- A deadlock occurs when there are threads T_1, \ldots, T_n such that:
 - Each is waiting for a lock held by the next
 - T_n is waiting for a resource held by T_1
 - In other words, there is a cycle of waiting

```java
class BankAccount {
    ...
    synchronized void withdraw(int amt) {...}
    synchronized void deposit(int amt) {...}
    synchronized void transferTo(int amt, BankAccount a) {
        this.withdraw(amt);
        a.deposit(amt);
    }
}
```

Consider simultaneous transfers from account x to account y, and y to x
Amortized Analysis

- To have an Amortized Bound of $O(f(n))$:
 - *There does not exist a series of M operations with run-time worse than $O(M*f(n))*

- Amortized vs average case
- To prove: prove that no series of operations can do worse than $O(M*f(n))$
- To disprove: find a series of operations that’s worse