CSE332: Data Abstractions
Lecture 24: Course Wrap-Up

Ruth Anderson
Winter 2011

Final Exam
Tuesday, March 15, 2:30-4:20
• Intention is to test topics in sorting, graphs, parallelism, concurrency
 – stuff not covered by the midterm
 – But as always the course topics build on earlier ones
• You will need to read and write Java, among other things

Four slides from Lecture 1
We have 10 weeks to learn fundamental data structures and algorithms for organizing and processing information:
 – “Classic” data structures / algorithms and how to analyze rigorously their efficiency and when to use them
 – Queues, dictionaries, graphs, sorting, etc.
 – Parallelism and concurrency (new!)

Four slides from Lecture 1
• Introduction to many (not all) of the basic data structures used in computer software
 – Understand the data structures and the trade-offs they make
 – Rigorously analyze the algorithms that use them (math!)
 – Learn how to pick “the right thing for the job”
 – More thorough and rigorous take on topics introduced in 143
 • And more
• Practice design and analysis of data structures / algorithms
• Practice implementing and using these data structures by writing programs
• Experience the purposes and headaches of multithreading

Four slides from Lecture 1
• To be able to make good design choices as a developer, project manager, etc.
 – Reason in terms of the general abstractions that come up in all non-trivial software (and many non-software) systems
• To be able to justify and communicate your design decisions

This course is key!
3 years from now this course will seem like it was a waste of your time because you can’t imagine not “just knowing” every main concept in it
• Key abstractions computer scientists and engineers use almost every day
• A big piece of what “a computer scientist knows”

Four slides from Lecture 1
(Often highly non-obvious) ways to organize information in order to enable efficient computation over that information
 – Key goal over the next week is introducing asymptotic analysis to precisely and generally describe efficient use of time and space
A data structure supports certain operations, each with a:
 – Meaning: what does the operation do/return
 – Performance: how efficient is the operation
Topics: Data structures + Threads

326 & 332
Big-Oh, Algorithm Analysis
Binary Heaps (Priority Qs)
AVL Trees
B Trees
Hashing
Sorting
Graph Traversals
Topological Sort
Shortest Paths
Minimum Spanning Trees

Added to 332
Multithreading Basics (1)
Fork-Join Parallelism (3)
 - Using Java library
 - Analysis: T_1 and T_∞
 - Amdahl’s Law
 - Reductions, Prefix, Sorting
Concurrency (4)
 - Races, deadlocks
 - Locks (mostly)
 - Condition variables (a bit)
 - Programming guidelines (!)

I want feedback on what worked/did not!

- “Quiz” on Wednesday
- Course Evals

Removed from 326
D-heaps
Leftist heaps
Skew heaps
Binomial queues
Splay trees
Disjoint sets

326 & 332
Big-Oh, Algorithm Analysis
Binary Heaps (Priority Qs)
AVL Trees
B Trees
Hashing
Sorting
Graph Traversals
Topological Sort
Shortest Paths
Minimum Spanning Trees