Announcements

- Homework 7 – due NOW at the BEGINNING of lecture!
- Homework 8 – coming soon, due Friday March 11th at the BEGINNING of lecture!
- Project 3 – the last programming project!
 - All Code - Tues March 8, 2011 11PM - (65% of overall grade):
 - Writeup - Thursday March 10, 2011, 11PM - (25% of overall grade)

“Scheduling note”

- “We now return to our interrupted program” on graphs
 - Last “graph lecture” was lecture 16
 - Shortest-path problem
 - Dijkstra’s algorithm for graphs with non-negative weights
- Why this strange schedule?
 - Needed to do parallelism and concurrency in time for project 3 and homeworks 6 and 7
 - But cannot delay all of graphs because of the CSE312 co-requisite
- So: not the most logical order, but hopefully not a big deal

Minimum Spanning Trees

Given an undirected graph \(G = (V, E) \), find a graph \(G' = (V, E') \) such that:
- \(E' \) is a subset of \(E \)
- \(|E'| = |V| - 1 \)
- \(G' \) is connected

\[\sum_{(u,v) \in E'} c_{uv} \] is minimal

Applications:
- Example: Electrical wiring for a house or clock wires on a chip
- Example: A road network if you cared about asphalt cost rather than travel time

Find the MST

Two Different Approaches

- Prim’s Algorithm
 - Almost identical to Dijkstra’s
- Kruskal’s Algorithm
 - Completely different!
Prim's Algorithm

Idea: Grow a tree by picking a vertex from the unknown set that has the smallest cost. Here cost = cost of the edge that connects that vertex to the known set. Pick the vertex with the smallest cost that connects "known" to "unknown."

A node-based greedy algorithm
Builds MST by greedily adding nodes

Prim's Algorithm vs. Dijkstra's

Recall:
Dijkstra picked the unknown vertex with smallest cost where cost = distance to the source.
Prim's pick the unknown vertex with smallest cost where cost = distance from this vertex to the known set (in other words, the cost of the smallest edge connecting this vertex to the known set)
– Otherwise identical
– Compare to slides in lecture 16!

Prim’s Algorithm for MST

1. For each node v, set v.cost = ∞ and v.known = false
2. Choose any node v. (this is like your “start” vertex in Dijkstra)
 a) Mark v as known
 b) For each edge (v, u) with weight w:
 set u.cost = w and u.prev = v
3. While there are unknown nodes in the graph
 a) Select the unknown node v with lowest cost
 b) Mark v as known and add (v, v.prev) to output (the MST)
 c) For each edge (v, u) with weight w,
 if (w < u.cost) {
 u.cost = w;
 u.prev = v;
 }

Example: Find MST using Prim's

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>prev</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>b</td>
<td>0</td>
<td>b</td>
</tr>
<tr>
<td>B</td>
<td>b</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>b</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>b</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>??</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>??</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>??</td>
<td></td>
</tr>
</tbody>
</table>

Example: Find MST using Prim's

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>prev</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>b</td>
<td>0</td>
<td>b</td>
</tr>
<tr>
<td>B</td>
<td>b</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>b</td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>D</td>
<td>b</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td>b</td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>6</td>
<td>D</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>5</td>
<td>D</td>
</tr>
</tbody>
</table>
Example: Find MST using Prim's

```
<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>prev</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td>Y</td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>F</td>
<td>Y</td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>G</td>
<td>Y</td>
<td>3</td>
<td>E</td>
</tr>
</tbody>
</table>
```

Example: Find MST using Prim's

```
<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>prev</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td>1</td>
<td>E</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td>Y</td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>F</td>
<td>Y</td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>G</td>
<td>Y</td>
<td>3</td>
<td>E</td>
</tr>
</tbody>
</table>
```

Example: Find MST using Prim's

```
<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>prev</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td>1</td>
<td>E</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td>Y</td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>F</td>
<td>Y</td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>G</td>
<td>Y</td>
<td>3</td>
<td>E</td>
</tr>
</tbody>
</table>
```

Example: Find MST using Prim's

```
<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>prev</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td>1</td>
<td>E</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td>Y</td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>F</td>
<td>Y</td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>G</td>
<td>Y</td>
<td>3</td>
<td>E</td>
</tr>
</tbody>
</table>
```

Student Activity

```
Find MST using Prim's

<table>
<thead>
<tr>
<th>V</th>
<th>Kwn</th>
<th>Distance</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>v1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Order Declared Known:

```
V1
```

304/2011
Prim’s Analysis

- Correctness ??
 - A bit tricky
 - Intuitively similar to Dijkstra
 - Might return to this time permitting (unlikely)

- Run-time
 - Same as Dijkstra
 - $O(|E| \log |V|)$ using a priority queue

Kruskal’s MST Algorithm

Idea: Grow a forest out of edges that do not create a cycle. Pick an edge with the smallest weight.

$G=(V,E)$

Aside: Union-Find aka Disjoint Set ADT

- Union(x,y) – take the union of two sets named x and y
 - Given sets: {3,5,7}, {4,2,8}, {9}, {1,6}
 - Union(5,1)
 - Result: {3,5,7,1,6}, {4,2,8}, {9}
 - To perform the union operation, we replace sets x and y by $(x \cup y)$

- Find(x) – return the name of the set containing x.
 - Given sets: {3,5,7,1,6}, {4,2,8}, {9}
 - Find(1) returns 5
 - Find(4) returns 8

- We can do Union in constant time.
- We can get Find to be amortized constant time (worst case $O(\log n)$ for an individual Find operation).

Kruskal’s Algorithm for MST

An edge-based greedy algorithm

Builds MST by greedily adding edges

1. Initialize with
 - empty MST
 - all vertices marked unconnected
 - all edges unmarked
2. While there are still unmarked edges
 a. Pick the lowest cost edge (u,v) and mark it
 b. If u and v are not already connected, add (u,v) to the MST and mark u and v as connected to each other

Kruskal’s pseudo code

```c
void Graph::kruskal(){
    int edgesAccepted = 0;
    DisjSet s(NUM_VERTICES);
    while (edgesAccepted < NUM_VERTICES - 1){
        // edge e = (u, v)
        uset = s.find(u);
        vset = s.find(v);
        if (uset != vset){
            edgesAccepted++;
            s.unionSets(uset, vset);
        }
    }
}
```

Find MST using Kruskal’s

- Now find the MST using Prim’s method.
- Under what conditions will these methods give the same result?
Example: Find MST using Kruskal’s

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the forest
Example: Find MST using Kruskal’s

Edges in sorted order:

1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
4: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the forest

Correctness

Kruskal’s algorithm is clever, simple, and efficient

– But does it generate a minimum spanning tree?
– How can we prove it?

First: it generates a spanning tree

– Intuition: Graph started connected and we added every edge that did not create a cycle
– Proof by contradiction: Suppose u and v are disconnected in Kruskal’s result. Then there’s a path from u to v in the initial graph with an edge we could add without creating a cycle. But Kruskal would have added that edge. Contradiction.

Second: There is no spanning tree with lower total cost...

The inductive proof set-up

Let \(F \) (stands for “forest”) be the set of edges Kruskal has added at some point during its execution.

Claim: \(F \) is a subset of one or more MSTs for the graph

(Therefore, once \(|F| = |V|-1 \), we have an MST.)

Proof: By induction on \(|F| \)

Base case: \(|F| = 0 \): The empty set is a subset of all MSTs

Inductive case: \(|F| = k+1 \). By induction, before adding the \((k+1)^{th}\) edge (call it \(e \), there was some MST \(T \) such that \(F-e \subseteq T \) ...

Staying a subset of some MST

Claim: \(F \) is a subset of one or more MSTs for the graph

So far: \(F-e \subseteq T \):

Two disjoint cases:

• If \(e \subseteq T \) Then \(F \subseteq T \) and we’re done
• Else \(e \) forms a cycle with some simple path (call it \(p \)) in \(T \)
 – Must be since \(T \) is a spanning tree
Staying a subset of some MST

Claim: F is a subset of one or more MSTs for the graph.

So far:
- $F \subseteq T$ and e forms a cycle with $p \subseteq T$
- There must be an edge e_2 on p such that e_2 is not in F
 - Else Kruskal would not have added e.

• Claim: $e_2.\text{weight} = e.\text{weight}$

- If $e_2.\text{weight} > e.\text{weight}$, then $T - \{e_2\} + \{e\}$ is a spanning tree with lower cost; contradiction.
- If $e_2.\text{weight} < e.\text{weight}$, then Kruskal would have already considered e_2. It would have added it since T has no cycles and $F - \{e\} \subseteq T$. But e_2 is not in F: contradiction.

3/04/2011 37

Staying a subset of some MST

Claim: F is a subset of one or more MSTs for the graph.

So far:
- $F \subseteq T$ and e forms a cycle with $p \subseteq T$
- e_2 on p is not in F

• Claim: $e_2.\text{weight} = e.\text{weight}$

- It’s a spanning tree because $p - \{e_2\} + \{e\}$ connects the same nodes as p
- It’s minimal because its cost equals cost of T, an MST

• Since $F \subseteq T - \{e_2\} + \{e\}$, F is a subset of one or more MSTs.

3/04/2011 38

Staying a subset of some MST

Claim: F is a subset of one or more MSTs for the graph.

So far:
- $F \subseteq T$ and e forms a cycle with $p \subseteq T$
- e_2 on p is not in F

• Claim: $e_2.\text{weight} = e.\text{weight}$

- $T - \{e_2\} + \{e\}$ is an MST
 - It’s a spanning tree because $p - \{e_2\} + \{e\}$ connects the same nodes as p
 - It’s minimal because its cost equals cost of T, an MST

• Since $F \subseteq T - \{e_2\} + \{e\}$, F is a subset of one or more MSTs.

3/04/2011 39