
CSE332: Data Abstractions

Lecture 21: Programming with Locks and
Critical Sections

Ruth Anderson
Winter 2011

Announcements

• Homework 7 – due Friday March 4th at the BEGINNING of
lecture!

• Project 3 – the last programming project!
– Version 1 & 2 - Tues March 1, 2011 11PM - (10% of overall grade)

– ALL Code - Tues March 8, 2011 11PM - (65% of overall grade):

– Writeup - Thursday March 10, 2011, 11PM - (25% of overall grade)

2

Outline

Done:

– The semantics of locks

– Locks in Java

– Using locks for mutual exclusion: bank-account example
This lecture:

– More bad interleavings (learn to spot these!)

– Guidelines/idioms for shared-memory and using locks correctly

– Coarse-grained vs. fine-grained

Next lecture:

– Readers/writer locks
– Deadlock

– Condition variables

– Data races and memory-consistency models

3

Races

A race condition occurs when the computation result depends on
scheduling (how threads are interleaved)
– If T1 and T2 happened to get scheduled in a certain way, things go

wrong

– We, as programmers, cannot control scheduling of threads; result is that
we need to write programs that work independent of scheduling

Race conditions are bugs that exist only due to concurrency

– No interleaved scheduling with 1 thread

Typically, problem is that some intermediate state can be seen by
another thread; screws up other thread
– Consider a ‘partial’ insert in a linked list; say, a new node has

been added to the end, but ‘back’ and ‘count’ haven’t been
updated

4

Data Races

• A data race is a specific type of race condition that can
happen in 2 ways:

– Two different threads can potentially write a variable at the
same time

– One thread can potentially write a variable while another
reads the variable

– Simultaneous reads are fine; not a data race, and nothing
bad would happen

– ‘Potentially’ is important; we say the code itself has a data
race – it is independent of an actual execution

• Data races are bad, but we can still have a race condition, and
bad behavior, when no data races are present

5

Stack Example

6

class Stack <E> {
private E[] array = (E[]) new Object[SIZE];
int index = -1;
synchronized boolean isEmpty () {

return index==-1;
}
synchronized void push (E val) {

array[++index] = val;
}
synchronized E pop() {

if (isEmpty())
throw new StackEmptyException();

return array[index--];
}

}

Example of a Race Condition, but not a Data
Race

class Stack <E> {
…
synchronized boolean isEmpty () { … }
synchronized void push (E val) { … }
synchronized E pop(E val) {

if (isEmpty())
throw new StackEmptyException();

…
}
E peek () {

E ans = pop();
push(ans);
return ans;

}
}

• Maybe we’re
writing peek in an
external class that
only has access
to Stack’s push
and pop

• In a sequential
world, this code is
of questionable
style, but correct

7

peek , sequentially speaking

• In a sequential world, this code is of questionable style, but
unquestionably correct

• The “algorithm” is the only way to write a peek helper method if
all you had was this interface:

8

interface Stack <E> {
boolean isEmpty ();
void push (E val);
E pop ();

}

class C {
static <E> E myPeek(Stack<E> s){ ??? }

}

Problems with peek

• peek has no overall effect on the shared data

– It is a “reader” not a “writer”

– State should be the same after it executes as before

• But the way it’s implemented creates an inconsistent
intermediate state
– Calls to push and pop are synchronized so there are no

data races on the underlying array/list/whatever

• Can’t access ‘top’ simultaneously

– There is still a race condition though

• This intermediate state should not be exposed; errors can occur

E peek () {
E ans = pop();
push(ans);
return ans;

}

9

Example 1: peek and isEmpty

• Property we want: If there has been a push (and no pop) ,
then isEmpty should return false

• With peek as written, property can be violated – how?

10

E ans = pop();

push(ans);

return ans;

push(x)
boolean b = isEmpty()

T
im

e

Thread 2Thread 1 (peek)

Example 1: peek and isEmpty

• Property we want: If there has been a push (and no pop) ,
then isEmpty should return false

• With peek as written, property can be violated – how?

11

E ans = pop();

push(ans);

return ans;

push(x)
boolean b = isEmpty()

T
im

e

Thread 2Thread 1 (peek)

Example 1: peek and isEmpty

• Property we want: If there has been a push (and no pop) ,
then isEmpty should return false

• With peek as written, property can be violated – how?

E ans = pop();
push(ans);
return ans;

push(x)
boolean b = isEmpty()

T
im

e

Thread 2Thread 1 (peek)

It can be violated if things occur in this order:
1. T2: push(x)
2. T1: pop()
3. T2: boolean b = isEmpty()

12

Example 2: peek and push

• Property we want: Values are returned from pop in LIFO order

• With peek as written, property can be violated – how?

13

E ans = pop();

push(ans);

return ans;

push(x)
push(y)
E e = pop()

T
im

e

Thread 2Thread 1 (peek)

Example 2: peek and push

• Property we want: Values are returned from pop in LIFO order

• With peek as written, property can be violated – how?

14

E ans = pop();

push(ans);

return ans;

push(x)
push(y)
E e = pop()

T
im

e

Thread 2Thread 1 (peek)

Example 2: peek and pop (again)

• Property we want: Values are returned from pop in LIFO order

• With peek as written, property can be violated – how?

15

E ans = pop();

push(ans);

return ans;

T
im

e

Thread 2Thread 1 (peek)
push(x)
push(y)
E e = pop()

Example 3: peek and peek

• Property we want: peek doesn’t throw an exception unless
stack is empty

• With peek as written, property can be violated – how?

16

E ans = pop();

push(ans);

return ans;

T
im

e

Thread 2 (peek)

E ans = pop();

push(ans);

return ans;

Thread 1 (peek)

Example 3: peek and peek

• Property we want: peek doesn’t throw an exception unless
stack is empty

• With peek as written, property can be violated – how?

17

E ans = pop();

push(ans);

return ans;

T
im

e

Thread 2 (peek)

E ans = pop();

push(ans);

return ans;

Thread 1 (peek)

The fix

• In short, peek needs synchronization to disallow interleavings

– The key is to make a larger critical section
• That intermediate state of peek needs to be protected

– Use re-entrant locks; will allow calls to push and pop

– Code on right is a peek external to the Stack class

18

class Stack <E> {
…
synchronized E peek (){

E ans = pop();
push(ans);
return ans;

}
}

class C {
<E> E myPeek(Stack<E> s){

synchronized (s) {
E ans = s.pop();
s.push(ans);
return ans;

}
}

}

The wrong “fix”

• Focus so far: problems from peek doing writes that lead to an
incorrect intermediate state

• Tempting but wrong: If an implementation of peek (or
isEmpty) does not write anything, then maybe we can skip the
synchronization?

• Does not work due to data races with push and pop …

19

Example, again (no resizing or checking)

20

class Stack <E> {
private E[] array = (E[]) new Object[SIZE];
int index = -1;
boolean isEmpty () { // unsynchronized: wrong?!

return index==-1;
}
synchronized void push (E val) {

array[++index] = val;
}
synchronized E pop() {

return array[index--];
}
E peek () { // unsynchronized: wrong!

return array[index];
}

}

Why wrong?

• It looks like isEmpty and peek can “get away with this” since push
and pop adjust the state “in one tiny step”

• But this code is still wrong and depends on language-implementation
details you cannot assume

– Even “tiny steps” may require multiple steps in the implementation:
array[++index] = val probably takes at least two steps

– Code has a data race, which may result in strange behavior
• Compiler optimizations may break it in ways you had not

anticipated

• We’ll talk about this more in the future

• Moral: Don’t introduce a data race, even if every interleaving you can
think of is correct

21

Getting it right

Avoiding race conditions on shared resources is difficult

– What ‘seems fine’ in a sequential world can get you into
trouble when race conditions are involved

– Decades of bugs has led to some conventional wisdom:

general techniques that are known to work

Rest of lecture distills key ideas and trade-offs

– Parts paraphrased from “Java Concurrency in Practice”

• Chapter 2 (rest of book more advanced)

– But none of this is specific to Java or a particular book!

22

Pick one of these 3 choices for memory:

For every memory location (e.g., object field) in your program, you
must obey at least one of the following:

1. Thread-local: Don’t use the location in > 1 thread
2. Immutable: Don’t write to the memory location

3. Synchronized: Use synchronization to control access to the
location

23

all memory thread-local
memory

immutable
memory

need
synchronization

Thread-local

Whenever possible, don’t share resources

– Easier to have each thread have its own thread-local copy
of a resource than to have one with shared updates

– This is correct only if threads don’t need to communicate
through the resource

• That is, multiple copies are a correct approach
• Example: Randomobjects

– Note: Since each call-stack is thread-local, never need to
synchronize on local variables

In typical concurrent programs, the vast majority of objects should
be thread-local: shared-memory should be rare – minimize it

24

Immutable

Whenever possible, don’t update objects

– Make new objects instead!

• One of the key tenets of functional programming (see CSE 341)

– Generally helpful to avoid side-effects

– Much more helpful in a concurrent setting

• If a location is only read, never written, then no synchronization
is necessary!

– Simultaneous reads are not races and not a problem

In practice, programmers usually over-use mutation – minimize it

25

The rest: Keep it synchronized

After minimizing the amount of memory that is (1) thread-shared
and (2) mutable, we need guidelines for how to use locks to
keep other data consistent

Guideline #0: No data races

• Never allow two threads to read/write or write/write the same
location at the same time (use locks!)

– Even if it ‘seems safe’
Necessary: In Java or C, a program with a data race is almost

always wrong

– Even if our reasoning tells us otherwise; ex: compiler
optimizations

But Not sufficient: Our peek example had no data races, and it’s
still wrong…

26

Consistent Locking

Guideline #1: Use consistent locking

• For each location needing synchronization, have a lock that is
always held when reading or writing the location

• We say the lock guards the location

• The same lock can (and often should) guard multiple locations
(ex. multiple fields in a class)

• Clearly document the guard for each location

• In Java, often the guard is the object containing the location
– this inside the object’s methods

27

Consistent Locking (continued)
• The mapping from locations to guarding locks is conceptual, and

is something that you have to enforce as a programmer

• It partitions the shared-&-mutable locations into “which lock”

28

Consistent locking is:

• Not sufficient: It prevents all data races, but still allows higher-level
races (exposed intermediate states)
– Our peek example used consistent locking, but had exposed

intermediate states (and allowed potential bad interleavings)

• Not necessary: Can change the locking protocol dynamically…

Beyond consistent locking…

• Consistent locking is an excellent guideline
– A “default assumption” about program design

– You will save yourself many a headache using this guideline

• But it isn’t required for correctness: Can have different program
phases use different locking techniques
– Provided all threads coordinate moving to the next phase

• Example from project 3, version 5:

– A shared grid being updated, so use a lock for each entry

– But after the grid is filled out, all threads except 1 terminate

• So synchronization no longer necessary (thread local)
– And later the grid becomes immutable

• Makes synchronization doubly unnecessary

29

Lock granularity
Coarse-grained: Fewer locks, i.e., more objects per lock

– Example: One lock for entire data structure (e.g., array)
– Example: One lock for all bank accounts

Fine-grained: More locks, i.e., fewer objects per lock

– Example: One lock per data element (e.g., array index)
– Example: One lock per bank account

“Coarse-grained vs. fine-grained” is really a continuum

30

…

…

Trade-offs
Coarse-grained advantages:

– Simpler to implement

– Faster/easier to implement operations that access multiple
locations (because all guarded by the same lock)

– Much easier for operations that modify data-structure shape

Fine-grained advantages:
– More simultaneous access (performance when coarse-

grained would lead to unnecessary blocking)

– Can make multi-node operations more difficult: say, rotations
in an AVL tree

Guideline #2: Start with coarse-grained (simpler) and move to fine-
grained (performance) only if contention on the coarser locks
becomes an issue.

31

Example: Separate Chaining Hashtable

• Coarse-grained: One lock for entire hashtable

• Fine-grained: One lock for each bucket

Which supports more concurrency for insert and lookup ?

Which makes implementing resize easier?

– How would you do it?

If a hashtable has a numElements field, maintaining it will destroy
the benefits of using separate locks for each bucket, why?

32

Example: Separate Chaining Hashtable

• Coarse-grained: One lock for entire hashtable

• Fine-grained: One lock for each bucket

Which supports more concurrency for insert and lookup ?

Fine-grained; allows simultaneous access to diff. buckets

Which makes implementing resize easier?

Coarse-grained; just grab one lock and proceed

– How would you do it?

If a hashtable has a numElements field, maintaining it will destroy
the benefits of using separate locks for each bucket, why?

Updating it each insert w/o a lock would be a data race

33

Critical-section granularity

A second, orthogonal granularity issue is critical-section size

– How much work to do while holding lock(s)?

If critical sections run for too long:

– Performance loss because other threads are blocked

If critical sections are too short:

– Bugs because you broke up something where other threads
should not be able to see intermediate state

Guideline #3: Don’t do expensive computations or I/O in critical
sections, but also don’t introduce race conditions; keep it as
small as possible but still be correct

34

Example: Critical-section granularity
Suppose we want to change the value for a key in a hashtable

without removing it from the table
– Assume lock guards the whole table

– expensive() takes in the old value, and computes a new
one, but takes a long time

35

synchronized (lock) {
v1 = table.lookup(k);
v2 = expensive(v1);
table.remove(k);
table.insert(k,v2);

}

Papa Bear’s
critical section
was too long

Example: Critical-section granularity
Suppose we want to change the value for a key in a hashtable

without removing it from the table
– Assume lock guards the whole table

– expensive() takes in the old value, and computes a new
one, but takes a long time

36

synchronized (lock) {
v1 = table.lookup(k);
v2 = expensive(v1);
table.remove(k);
table.insert(k,v2);

}

Papa Bear’s
critical section
was too long

(table locked
during
expensive call)

Example: Critical-section granularity

Suppose we want to change the value for a key in a hashtable
without removing it from the table
– Assume lock guards the whole table

37

synchronized (lock) {
v1 = table.lookup(k);

}
v2 = expensive(v1);
synchronized (lock) {

table.remove(k);
table.insert(k,v2);

}

Mama Bear’s
critical section
was too short

Example: Critical-section granularity

Suppose we want to change the value for a key in a hashtable
without removing it from the table
– Assume lock guards the whole table

38

synchronized (lock) {
v1 = table.lookup(k);

}
v2 = expensive(v1);
synchronized (lock) {

table.remove(k);
table.insert(k,v2);

}

Mama Bear’s
critical section
was too short

(if another thread
updated the entry,
we will lose an
update)

Example: Critical-section granularity

Suppose we want to change the value for a key in a hashtable
without removing it from the table
– Assume lock guards the whole table

39

done = false;
while (!done) {

synchronized (lock) {
v1 = table.lookup(k);

}
v2 = expensive(v1);
synchronized (lock) {

if (table.lookup(k)==v1) {
done = true; // I can exit the loop!

table.remove(k);
table.insert(k,v2);

}}}

Baby Bear’s
critical section
was just right

Example: Critical-section granularity

Suppose we want to change the value for a key in a hashtable
without removing it from the table
– Assume lock guards the whole table

40

done = false;
while (!done) {

synchronized (lock) {
v1 = table.lookup(k);

}
v2 = expensive(v1);
synchronized (lock) {

if (table.lookup(k)==v1) {
done = true; // I can exit the loop!

table.remove(k);
table.insert(k,v2);

}}}

Baby Bear’s
critical section
was just right

(if another update
occurred, try our
update again)

Atomicity

An operation is atomic if no other thread can see it partly executed

– Atomic as in “(appears) indivisible”

– Typically want ADT operations atomic, even to other threads
running operations on the same ADT

Guideline #4: Think in terms of what operations need to be atomic

– Make critical sections just long enough to preserve atomicity

– Then design the locking protocol to implement the critical
sections correctly

That is: Think about atomicity first and locks second

41

Don’t roll your own

• It is rare that you should write your own data structure

– Provided in standard libraries

– Point of CSE 332 is to understand the key trade-offs,
abstractions and analysis

• Especially true for concurrent data structures

– Far too difficult to provide fine-grained synchronization
without race conditions

– Standard thread-safe libraries like ConcurrentHashMap
written by world experts

Guideline #5: Use built-in libraries whenever they meet your needs

42

