Announcements

- Homework 5 – due NOW, at the BEGINNING of lecture
- Homework 6 – due Friday Feb 25th at the BEGINNING of lecture
- Project 3 – the last programming project!
 - Partner Selection - Tues, Feb 22, 11pm
 - Version 1 & 2 - Tues March 1, 2011 11PM - (10% of overall grade)
 - ALL Code - Tues March 8, 2011 11PM - (65% of overall grade):
 - Writeup - Thursday March 10, 2011, 11PM - (25% of overall grade)

Outline

Done:
- How to use fork and join to write a parallel algorithm
- Why using divide-and-conquer with lots of small tasks is best
 - Combines results in parallel
- Some Java and ForkJoin Framework specifics
 - More pragmatics (e.g., installation) in separate notes

Now:
- More examples of simple parallel programs
- Arrays & balanced trees support parallelism, linked lists don’t
- Asymptotic analysis for fork-join parallelism
- Amdahl’s Law

We looked at summing an array

- Summing an array went from $O(n)$ sequential to $O(\log n)$ parallel (assuming a lot of processors and very large n)
 - An exponential speed-up in theory
 - Not bad; that’s 4 billion versus 32 (without constants, and in theory)

Examples

- Parallelization (for some algorithms)
 - Describe how to compute result at the ‘cut-off’
 - Describe how to merge results
- How would we do the following (assuming data is given as an array)?
 1. Maximum or minimum element
 2. Is there an element satisfying some property (e.g., is there a 17)?
 3. Left-most element satisfying some property (e.g., first 17)
 4. Smallest rectangle encompassing a number of points (proj3)
 5. Counts; for example, number of strings that start with a vowel
 6. Are these elements in sorted order?
Reductions

• This class of computations are called reductions
 – We ‘reduce’ a large array of data to a single item
• Note: Recursive results don’t have to be single numbers or strings. They can be arrays or objects with multiple fields.
 – Example: create a Histogram of test results from a much larger array of actual test results
• While many can be parallelized due to nice properties like associativity of addition, some things are inherently sequential
 – How we process arr[i] may depend entirely on the result of processing arr[i-1]

Even easier: Data Parallel (Maps)

• While reductions are a simple pattern of parallel programming, maps are even simpler
 – Operate on set of elements to produce a new set of elements (no combining results); generally input and output are of the same length
 – Eg. Multiply each element of an array by 2.

Maps in ForkJoin Framework

class VecAdd extends RecursiveAction {
 int lo; int hi; int[] res; int[] arr1; int[] arr2;
 VecAdd(int l, int h, int[] r, int[] a1, int[] a2) { ...
 }
 protected void compute() {
 if (hi - lo < SEQUENTIAL_CUTOFF) {
 for(int i=lo; i < hi; i++)
 res[i] = arr1[i] + arr2[i];
 } else {
 int mid = (hi+lo)/2;
 VecAdd left = new VecAdd(lo, mid, res, arr1, arr2);
 VecAdd right = new VecAdd(mid, hi, res, arr1, arr2);
 left.fork();
 right.compute();
 left.join(); //this was missing on orig slide
 }
 }
 static final ForkJoinPool fJPool = new ForkJoinPool();
 int[] add(int[] ar1, int[] ar2){
 assert (ar1.length == ar2.length);
 int[] ans = new int[ar1.length];
 for(int i=0; i < ar1.length; i++) {
 result[i] = arr1[i] + arr2[i];
 }
 return result;
 }
}

Map vs reduce in ForkJoin framework

• In our examples:
 • Reduce:
 – Parallel-sum extended RecursiveTask
 – Result was returned from compute()
 • Map:
 – Class extended was RecursiveAction
 – Nothing returned from compute()
 – In the above code, the ‘answer’ array was passed in as a parameter
 • Doesn’t have to be this way
 – Map can use RecursiveTask to, say, return an array
 – Reduce could use RecursiveAction; depending on what you’re passing back via RecursiveTask, could store it as a class variable and access it via ‘left’ or ‘right’ when done

Digression on maps and reduces

• You may have heard of Google’s ‘map/reduce’
 – Or the open-source version Hadoop
• Idea: Want to run algorithm on enormous amount of data; say, sort a petabyte (10^16 gigabytes) of data
 – Perform maps and reduces on data using many machines
 • The system takes care of distributing the data and managing fault tolerance
 • You just write code to map one element and reduce elements to a combined result
 – Separates how to do recursive divide-and-conquer from what computation to perform
 • Old idea in higher-order programming (see CSE 341) transferred to large-scale distributed computing

Works on Trees as well as Arrays

• Our basic patterns so far – maps and reduces – work just fine on balanced trees
 – Divide-and-conquer each child rather than array sub-ranges
 – Correct for unbalanced trees, but won’t get much speed-up
• Example: minimum element in an unsorted but balanced binary tree in \(O(\log n)\) time given enough processors
 – How to do the sequential cut-off?
 – Store number-of-descendants at each node (easy to maintain)
 – Or could approximate it with, e.g., AVL height
Linked lists

- Can you parallelize maps or reduces over linked lists?
 - Example: Increment all elements of a linked list
 - Example: Sum all elements of a linked list
- Once again, data structures matter!
- For parallelism, balanced trees generally better than lists so that we can get to all the data exponentially faster \(O(\log n) \) vs. \(O(n) \)
 - Trees have the same flexibility as lists compared to arrays (in terms of say inserting an item in the middle of the list)

Analyzing algorithms

- Like all algorithms, parallel algorithms should be:
 - Correct
 - Efficient
- For our algorithms so far, correctness is “obvious” so we’ll focus on efficiency:
 - We still want asymptotic bounds
 - Want to analyze the algorithm without regard to a specific number of processors
 - The key “magic” of the ForkJoin Framework is getting expected run-time performance asymptotically optimal for the available number of processors
 - This lets us just analyze our algorithms given this “guarantee”

Work and Span

Let \(T_P \) be the running time if there are \(P \) processors available
- Type/power of processors doesn’t matter: \(T_P \) used asymptotically, and to compare improvement by adding a few processors

Two key measures of run-time for a fork-join computation:
- Work: How long it would take 1 processor = \(T_1 \)
 - Just “sequentialize” all the recursive forking
- Span: How long it would take infinity processors = \(T_\infty \)
 - The hypothetical ideal for parallelization
 - This is the longest “dependence chain” in the computation

The DAG

- A program execution using \(\text{fork} \) and \(\text{join} \) can be seen as a DAG
 - Nodes: Pieces of work
 - Edges: Source node must finish before destination node starts
- A \(\text{fork} \) “ends a node” and makes two outgoing edges
 - New thread
 - Continuation of current thread
- A \(\text{join} \) “ends a node” and makes a node with two incoming edges
 - Node just ended
 - Last node of thread joined on

Our simple examples

- \(\text{fork} \) and \(\text{join} \) are very flexible, but our divide-and-conquer maps and reduces so far use them in a very basic way:
 - A tree on top of an upside-down tree

In this context, the span (\(T_\infty \)) is:
- The longest dependence chain; longest branch in parallel tree
- Example: \(O(\log n) \) for summing an array; we halve the data down to our cut-off, then add back together; \(O(\log n) \) steps, \(O(1) \) time for each
- Also called “critical path length” or “computational depth”
More interesting DAGs?

- The DAGs are not always this simple
- Example:
 - Suppose combining two results might be expensive enough that we want to parallelize each one
 - Then each node in the inverted tree on the previous slide would itself expand into another set of nodes for that parallel computation

Connecting to performance

- Recall: T_p = running time if there are P processors available
- Work = T_1 = sum of run-time of all nodes in the DAG
 - One processor has to do all the work
 - Any topological sort is a legal execution
- Span = T_∞ = sum of run-time of all nodes on the most-expensive path in the DAG
 - Note: costs are on the nodes not the edges
 - Our infinite army can do everything that is ready to be done, but still has to wait for earlier results

Definitions

A couple more terms:

- Speed-up on P processors: T_1 / T_P
- If speed-up is P as we vary P, we call it perfect linear speed-up
 - Perfect linear speed-up means doubling P halves running time
 - Usually our goal; hard to get in practice
- Parallelism is the maximum possible speed-up: T_1 / T_∞
 - At some point, adding processors won’t help
 - What that point is depends on the span

Division of responsibility

- Our job as ForkJoin Framework users:
 - Pick a good algorithm
 - Write a program. When run, it creates a DAG of things to do
 - Make all the nodes a small-ish and approximately equal amount of work
- The framework-writer’s job (won’t study how to do it):
 - Assign work to available processors to avoid idling
 - Keep constant factors low
 - Give an expected-time guarantee (like quicksort) assuming framework-user did his/her job

What that means (mostly good news)

The fork-join framework guarantee:

$$T_p = O(T_1 / P + T_\infty)$$

- No implementation of your algorithm can beat $O(T_1 / P)$ by more than a constant factor
- No implementation of your algorithm on P processors can beat $O(T_1 / P)$ (ignoring memory-hierarchy issues)
- So the framework on average gets within a constant factor of the best you can do, assuming the user did his/her job

So: You can focus on your algorithm, data structures, and cut-offs rather than number of processors and scheduling

- Analyze running time given T_1, T_∞, and P

Examples

$$T_p = O(T_1 / P + T_\infty)$$

- In the algorithms seen so far (e.g., sum an array):
 - $T_1 = O(n)$
 - $T_\infty = O(\log n)$
 - So expect (ignoring overheads): $T_p = O(nP + \log n)$

- Suppose instead:
 - $T_1 = O(n^2)$
 - $T_\infty = O(n)$
 - So expect (ignoring overheads): $T_p = O(n^2P + n)$
Amdahl's Law (mostly bad news)

- So far: talked about a parallel program in terms of work and span
- In practice, it's common that your program has:
 a) parts that parallelize well:
 - Such as maps/reduces over arrays and trees
 b) ...and parts that don't parallelize at all:
 - Such as reading a linked list, getting input, or just doing computations where each step needs the results of previous step
- These unparallelized parts can turn out to be a big bottleneck

Amdahl's Law (mostly bad news)

Let the work (time to run on 1 processor) be 1 unit time.

Let S be the portion of the execution that can’t be parallelized (i.e. must be run sequentially)

Then:
$$T_1 = S + (1-S) = 1$$

Suppose we get perfect linear speedup on the parallel portion

Then:
$$T_P = S + (1-S)/P$$

So the overall speedup with P processors is (Amdahl's Law):

$$T_1 / T_P = 1 / (S + (1-S)/P)$$

And the parallelism (infinite processors) is:

$$T_1 / T_\infty = 1 / S$$

Amdahl's Law Example

Suppose:
$$T_1 = S + (1-S) = 1$$
(aka total program execution time)
$$T_1 = 1/3 + 2/3 = 1$$

$$T_1 = 33\text{ sec} + 67\text{ sec} = 100\text{ sec}$$

Time on P processors: $T_P = S + (1-S)/P$

So:
$$T_P = 33\text{ sec} + (67\text{ sec})/P$$
$$T_P = 33\text{ sec} + (67\text{ sec})/3 =$$

Why such bad news?

- Suppose 33% of a program is sequential
 - Then a billion processors won’t give a speedup over 3!!!
- No matter how many processors you use, your speedup is bounded by the sequential portion of the program.

The future and Amdahl's Law

Speedup: $T_1 / T_P = 1 / (S + (1-S)/P)$

Max Parallelism: $T_1 / T_\infty = 1 / S$

- Suppose you miss the good old days (1980-2005) where 12ish years was long enough to get 100x speedup
 - Now suppose in 12 years, clock speed is the same but you get 256 processors instead of 1
 - What portion of the program must be parallelizable to get 100x speedup?

For 256 processors to get at least 100x speedup, we need
$$100 \leq 1 / (S + (1-S)/256)$$
Which means $S \leq 0.0061$ (i.e., 99.4% must be parallelizable)
Plots you have to see

1. Assume 256 processors
 - x-axis: sequential portion S, ranging from .01 to .25
 - y-axis: speedup T_1 / T_P (will go down as S increases)

2. Assume S = .01 or .1 or .25 (three separate lines)
 - x-axis: number of processors P, ranging from 2 to 32
 - y-axis: speedup T_1 / T_P (will go up as P increases)

I encourage you to try this out!
- Chance to use a spreadsheet or other graphing program
- Compare against your intuition
- A picture is worth 1000 words, especially if you made it

All is not lost

Amdahl’s Law is a bummer!
- But it doesn’t mean additional processors are worthless

- We can find new parallel algorithms
 - Some things that seem entirely sequential turn out to be parallelizable
 - Eg. How can we parallelize the following?
 - Take an array of numbers, return the ‘running sum’ array:

<table>
<thead>
<tr>
<th>Input</th>
<th>6</th>
<th>4</th>
<th>16</th>
<th>10</th>
<th>16</th>
<th>14</th>
<th>2</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>6</td>
<td>10</td>
<td>26</td>
<td>36</td>
<td>52</td>
<td>66</td>
<td>68</td>
<td>76</td>
</tr>
</tbody>
</table>

- At a glance, not sure; we’ll explore this shortly

- We can also change the problem we’re solving or do new things
 - Example: Video games use tons of parallel processors
 - They are not rendering 10-year-old graphics faster
 - They are rendering richer environments and more beautiful (terrible?) monsters

Moore and Amdahl

- Moore’s “Law” is an observation about the progress of the semiconductor industry
 - Transistor density doubles roughly every 18 months
- Amdahl’s Law is a mathematical theorem
 - Implies diminishing returns of adding more processors
- Both are incredibly important in designing computer systems