Topological Sort

Problem: Given a DAG \((V, E) \), output all the vertices in order such that if no vertex appears before any other vertex that has an edge to it.

Example input:

Example output:

```
142, 126, 143, 311, 331, 332, 312, 341, 351, 333, 440, 352
```

Questions and comments

- Why do we perform topological sorts only on DAGs?
- Is there always a unique answer?
- What DAGs have exactly 1 answer?
- Terminology: A DAG represents a partial order and a topological sort produces a total order that is consistent with it.
Questions and comments

- Why do we perform topological sorts only on DAGs?
 - Because a cycle means there is no correct answer
- Is there always a unique answer?
 - No, there can be 1 or more answers; depends on the graph
- What DAGs have exactly 1 answer?
 - Lists
- Terminology: A DAG represents a partial order and a topological sort produces a total order that is consistent with it

Uses

- Figuring out how to finish your degree
- Computing the order in which to recompute cells in a spreadsheet
- Determining the order to compile files using a Makefile
- In general, taking a dependency graph and coming up with an order of execution

A first algorithm for topological sort

1. Label each vertex with its in-degree
 - Labeling also called marking
 - Think “write in a field in the vertex”, though you could also do this with a data structure (e.g., array) on the side
2. While there are vertices not yet output:
 a) Choose a vertex \(v \) with labeled with in-degree of 0
 b) Output \(v \) and “remove it” (conceptually) from the graph
 c) For each vertex \(u \) adjacent to \(v \) (i.e. \((v,u) \) in \(E \)), decrement the in-degree of \(u \)

Example

Output: 126

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed?: x x
In-degree: 0 0 2 1 2 1 1 1 1 1 1

Example

Output: 126 142

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed?: x x
In-degree: 0 0 2 1 2 1 1 1 1 1 1 1

Example

Output:

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x
In-degree: 0 0 2 1 2 1 1 1 1 1 1 1

Example

Output: 126 142

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed?: x x
In-degree: 0 0 2 1 2 1 1 1 1 1 1 1

In-degree: 0 0 2 1 2 1 1 1 1 1 1 1
A couple of things to note

- Needed a vertex with in-degree of 0 to start
 - No cycles
- Ties between vertices with in-degrees of 0 can be broken arbitrarily
 - Potentially many different correct orders

Running time?

- What is the worst-case running time?
 - Initialization $O(V + |E|)$
 - Sum of all find-new-vertex $O(V^2)$ (because each $O(V)$)
 - Sum of all decrements $O(E)$ (assuming adjacency list)
 - So total is $O(V^2 + |E|)$ — not good for a sparse graph!

Doing better

The trick is to avoid searching for a zero-degree node every time!
- Keep the “pending” zero-degree nodes in a list, stack, queue, box, table, or something
- Order we process them affects output but not correctness or efficiency provided add/remove are both $O(1)$

Using a queue:
1. Label each vertex with its in-degree, enqueue 0-degree nodes
2. While queue is not empty
 a) $v = \text{dequeue}()$
 b) Output v and remove it from the graph
 c) For each vertex u adjacent to v (i.e. u such that (v, u) in E), decrement the in-degree of u, if new degree is 0, enqueue it
Graph Traversals

Next problem: For an arbitrary graph and a starting node \(v \), find all nodes reachable (i.e., there exists a path) from \(v \)
- Possibly “do something” for each node (an iterator!)
 - E.g. Print to output, set some field, etc.

Related:
- Is an undirected graph connected?
- Is a directed graph weakly / strongly connected?
 - For strongly, need a cycle back to starting node

Basic idea:
- Keep following nodes
- But “mark” nodes after visiting them, so the traversal terminates and processes each reachable node exactly once

Abstract idea

```
traverseGraph(Node start) {
    Set pending = emptySet();
    pending.add(start)
    mark start as visited
    while(pending is not empty) {
        next = pending.remove()
        for each node u adjacent to next
            if u is not marked {
                mark u
                pending.add(u)
            }
    }
}
```

Recursive DFS, Example : trees

```
DFS(Node start) {
    mark and “process”(e.g. print) start
    for each node u adjacent to start
        if u is not marked
            DFS(u)
}
```

- A tree is a graph and DFS and BFS are particularly easy to “see”
- Order processed: A, B, D, E, C, F, G, H
- Exactly what we called a “pre-order traversal” for trees
 - The marking is because we support arbitrary graphs and we want to process each node exactly once

Running time and options

- Assuming add and remove are \(O(1) \), entire traversal is \(O(|E|) \)
- The order we traverse depends entirely on add and remove
 - Popular choice: a stack “depth-first graph search” “DFS”
 - Popular choice: a queue “breadth-first graph search” “BFS”
- DFS and BFS are “big ideas” in computer science
 - Depth: recursively explore one part before going back to the other parts not yet explored
 - Breadth: Explore areas closer to the start node first
DFS with a stack, Example: trees

```
DFS(Node start) {
    initialize stack s to hold start
    mark start as visited
    while(s is not empty) {
        next = s.pop() // and "process"
        for each node u adjacent to next
            if(u is not marked)
                mark u and push onto s
    }
}
```

- Order processed: A, C, F, H, G, B, E, D
- A different but perfectly fine traversal

BFS with a queue, Example: trees

```
BFS(Node start) {
    initialize queue q to hold start
    mark start as visited
    while(q is not empty) {
        next = q.dequeue() // and "process"
        for each node u adjacent to next
            if(u is not marked)
                mark u and enqueue onto q
    }
}
```

- Order processed: A, B, C, D, E, F, G, H
- A "level-order" traversal

Comparison

- Breadth-first always finds shortest paths – “optimal solutions”
 - Better for “what is the shortest path from x to y”
- But depth-first can use less space in finding a path
 - If longest path in the graph is \(p \) and highest out-degree is \(d \)
 then DFS stack never has more than \(dp \) elements
 - But a queue for BFS may hold \(O(|V|) \) nodes
- A third approach:
 - **Iterative deepening (IDFS):** Try DFS but don’t allow recursion more than \(k \) levels deep. If that fails, increment \(k \) and start the entire search over
 - Like BFS, finds shortest paths. Like DFS, less space.

Saving the path

- Our graph traversals can answer the reachability question:
 - “Is there a path from node x to node y?”
- But what if we want to actually output the path?
 - Like getting driving directions rather than just knowing it’s possible to get there!
- Easy:
 - Instead of just “marking” a node, store the previous node along the path (when processing \(u \) causes us to add \(v \) to the search, set \(v.path \) field to be \(u \))
 - When you reach the goal, follow \(path \) fields back to where you started (and then reverse the answer)
 - If just wanted path length, could put the integer distance at each node instead

Example using BFS

What is a path from Seattle to Tyler
- Remember marked nodes are not re-enqueued
- Note shortest paths may not be unique

```
Seattle ➔ Salt Lake City ➔ Dallas ➔ Tyler
Chicago
San Francisco
```

Example using BFS

What is a path from Seattle to Tyler
- Remember marked nodes are not re-enqueued
- Note shortest paths may not be unique

```
Seattle ➔ Salt Lake City ➔ Dallas ➔ Tyler
Chicago
San Francisco
```