Graphs

A graph is a formalism for representing relationships among items
- Very general definition because very general concept

A graph is a pair
\[G = (V, E) \]
- A set of vertices, also known as nodes
 \[V = \{v_1, v_2, \ldots, v_n\} \]
- A set of edges
 \[E = \{e_1, e_2, \ldots, e_m\} \]
 - Each edge \(e_i \) is a pair of vertices
 \[(v_j, v_k) \]
 - An edge "connects" the vertices

Graphs can be directed or undirected

Some graphs

For each, what are the vertices and what are the edges?
- Web pages with links
- Facebook friends
- "Input data" for the Kevin Bacon game
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites
- …

Wow: Using the same algorithms for problems for this very different data sounds like "core computer science and engineering"
Undirected Graphs

- In undirected graphs, edges have no specific direction
 - Edges are always “two-way”

- Thus, \((u, v) \in E\) implies \((v, u) \in E\).
 - Only one of these edges needs to be in the set; the other is implicit

- Degree of a vertex: number of edges containing that vertex
 - Put another way: the number of adjacent vertices

Directed graphs

- In directed graphs (sometimes called digraphs), edges have a specific direction

- Thus, \((u, v) \in E\) does not imply \((v, u) \in E\).

- Let \((u, v) \in E\) mean \(u \rightarrow v\) and call \(u\) the source and \(v\) the destination

- In-Degree of a vertex: number of in-bound edges, i.e., edges where the vertex is the destination

- Out-Degree of a vertex: number of out-bound edges, i.e., edges where the vertex is the source

Self-edges, connectedness, etc.

- A self-edge a.k.a. a loop is an edge of the form \((u, u)\)
 - Depending on the use/algorithm, a graph may have:
 - No self edges
 - Some self edges
 - All self edges (in which case often implicit, but we will be explicit)

- A node can have a degree / in-degree / out-degree of zero

- A graph does not have to be connected (In an undirected graph, this means we can follow edges from any node to every other node), even if every node has non-zero degree

More notation

For a graph \(G = (V, E)\):

- \(|V|\) is the number of vertices
- \(|E|\) is the number of edges
 - Minimum?
 - Maximum for undirected?
 - Maximum for directed?

- If \((u, v) \in E\)
 - Then \(v\) is a neighbor of \(u\), i.e., \(v\) is adjacent to \(u\)
 - Order matters for directed edges: In this example \(v\) is adjacent to \(u\), but \(u\) is not adjacent to \(v\) (unless \((v, u) \in E\))

Examples again

Which would use directed edges? Which would have self-edges?
Which could have 0-degree nodes?

- Web pages with links
- Facebook friends
- “Input data” for the Kevin Bacon game
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites
- …
Weighted graphs

- In a weighed graph, each edge has a weight a.k.a. cost
 - Typically numeric (most examples will use ints)
 - Orthogonal to whether graph is directed
 - Some graphs allow negative weights; many don’t

Examples

- Web pages with links
- Facebook friends
- "Input data" for the Kevin Bacon game
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites
- …

Paths and Cycles

- A path is a list of vertices \(\{v_0, v_1, ..., v_n\} \) such that \((v_i, v_{i+1}) \in E \) for all \(0 \leq i < n \). Say "a path from \(v_0 \) to \(v_n \)."
- A cycle is a path that begins and ends at the same node \((v_n = v_0) \)

Example path (that also happens to be a cycle):
[Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]

Path Length and Cost

- Path length: Number of edges in a path (also called "unweighted cost")
- Path cost: sum of the weights of each edge

Example where:
\(P = [\text{Seattle, Salt Lake City, Chicago, Dallas, San Francisco}] \)

length(\(P \)) = 4
\(\text{cost}(P) = 9.5 \)

Simple paths and cycles

- A simple path repeats no vertices, (except the first might be the last):
 [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]
 [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]
- Recall, a cycle is a path that ends where it begins:
 [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]
 [Seattle, Salt Lake City, Seattle, Dallas, Seattle]
- A simple cycle is a cycle and a simple path:
 [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]

Paths/cycles in directed graphs

Example:

\[A \rightarrow D \\
B \rightarrow C \]

Is there a path from A to D?

Does the graph contain any cycles?
Paths/cycles in directed graphs

Example:

Is there a path from A to D? **No**

Does the graph contain any cycles? **No**

Undirected graph connectivity

- An undirected graph is **connected** if for all pairs of vertices \(u, v \), there exists a path from \(u \) to \(v \)

- An undirected graph is **complete**, a.k.a. fully connected if for all pairs of vertices \(u, v \), there exists an edge from \(u \) to \(v \)

Directed graph connectivity

- A directed graph is **strongly connected** if there is a path from every vertex to every other vertex.

- A directed graph is **weakly connected** if there is a path from every vertex to every other vertex, ignoring direction of edges.

- A complete a.k.a. fully connected directed graph has an edge from every vertex to every other vertex.

Examples

For undirected graphs: connected?
For directed graphs: strongly connected? weakly connected?

- Web pages with links
- Facebook friends
- "Input data" for the Kevin Bacon game
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites
- ...

Trees as graphs

When talking about graphs, we say a **tree** is a graph that is:

- undirected
- acyclic
- connected

So all trees are graphs, but not all graphs are trees.

How does this relate to the trees we know and love?...

Rooted Trees

- We are more accustomed to **rooted trees** where:
 - We identify a unique ("special") root
 - We think of edges as directed: parent to children
- Given a tree, once you pick a root, you have a unique rooted tree (just drawn differently and with undirected edges).
Rooted Trees (Another example)

- We are more accustomed to rooted trees where:
 - We identify a unique ("special") root
 - We think of edges as directed: parent to children
- Given a tree, once you pick a root, you have a unique rooted tree (just drawn differently and with undirected edges)

Directed acyclic graphs (DAGs)

- A DAG is a directed graph with no (directed) cycles
 - Every rooted directed tree is a DAG
 - But not every DAG is a rooted directed tree:

Examples

Which of our directed-graph examples do you expect to be a DAG?

- Web pages with links
- "Input data" for the Kevin Bacon game
- Methods in a program that call each other
- Airline routes
- Family trees
- Course pre-requisites
- …

Density / sparsity

- Recall: In an undirected graph, $0 \leq |E| < |V|^2$
- Recall: In a directed graph: $0 \leq |E| \leq |V|^2$
- So for any graph, $|E| = \Theta(|V|^2)$
- One more fact: If an undirected graph is connected, then $|E| \geq |V|-1$
- Because $|E|$ is often much smaller than its maximum size, we do not always approximate as $|E| = O(|V|^2)$
 - This is a correct bound, it just is often not tight
 - If it is tight, i.e., $|E| = \Theta(|V|)$ we say the graph is dense
 - More sloppily, dense means "lots of edges"
- If $|E|$ is $O(|V|)$ we say the graph is sparse
 - More sloppily, sparse means "most (possible) edges missing"

What's the data structure?

- Okay, so graphs are really useful for lots of data and questions we might ask like "what's the lowest-cost path from x to y"
- But we need a data structure that represents graphs
- Which data structure is "best" can depend on:
 - properties of the graph (e.g., dense versus sparse)
 - the common queries (e.g., "is (u, v) an edge?" versus "what are the neighbors of node u?")
- So we'll discuss the two standard graph representations…
 - Adjacency Matrix and Adjacency List
 - Different trade-offs, particularly time versus space

Adjacency matrix

- Assign each node a number from 0 to $|V|-1$
- A $|V| \times |V|$ matrix (i.e., 2-D array) of booleans (or 1 vs. 0)
 - If M is the matrix, then $M[u][v] = \text{true}$ means there is an edge from u to v
Adjacency matrix properties

- **Running time to:**
 - Get a vertex’s out-edges: \(O(|V|)\)
 - Get a vertex’s in-edges: \(O(|V|)\)
 - Decide if some edge exists: \(O(1)\)
 - Insert an edge: \(O(1)\)
 - Delete an edge: \(O(1)\)

- **Space requirements:**
 - \(|V|^2\) bits

- Best for **sparse** or **dense** graphs?

Adjacency List

- Assign each node a number from 0 to \(|V| - 1\)
- An array of length \(|V|\) in which each entry stores a list (e.g., linked list) of all adjacent vertices

Adjacency List Properties

- **Running time to:**
 - Get all of a vertex’s out-edges: \(O(d)\) where \(d\) is out-degree of vertex
 - Get all of a vertex’s in-edges: \(O(|V|)\)
 - Decide if some edge exists: \(O(d)\) where \(d\) is out-degree of source
 - Insert an edge: \(O(1)\)
 - Delete an edge: \(O(d)\) where \(d\) is out-degree of source

- **Space requirements:**
 - \(|V| + |E|\)

- Best for **sparse** graphs: so usually just stick with linked lists

Diagram:

```
A -> B -> C
```

List:

```
A: B
B: A, D
C: B, D
D: / 
```
Undirected graphs

Adjacency matrices & adjacency lists both do fine for undirected graphs
- Matrix: Could save space; only ~1/2 the array is used
- Lists: Each edge in two lists to support efficient “get all neighbors”

Example:

Next...

Okay, we can represent graphs

Now let’s implement some useful and non-trivial algorithms

- **Topological sort**: Given a DAG, order all the vertices so that every vertex comes before all of its neighbors
- **Shortest paths**: Find the shortest or lowest-cost path from x to y
 - Related: Determine if there even is such a path