1/26/2011

Announcements

« Project 2 — posted!
« Homework 3- due Friday Jan 28stat the BEGINNING of lecture

CSE332: Data Abstractions
Lecture 10:Hashing

Ruth Anderson
Winter 2011
1/26/2011 2
Today Hash Tables
« Dictionaries « Aim for constant-time (i.e., O(1)) fi nd, i nsert,and del ete
— Hashing — “On average” under some reasonable assumptions
« Anhash table is an array of some fixed size
Y hash table
0
« Basic idea:
hash function:
index = h(key)
_—
key space (e.g., integers, strings) TableSize —1
1/26/2011 3 1/26/2011 4
Hash tables Hash functions
« There are m possible keys (m typically large, even infinite) but An ideal hash function:
we expect our table to have only n items where n is much less « Is fast to compute
than m (often written n << m) . . “ " .
Rarely” hlashes t.WO lused keys to the sam? index hash table
o . — Often impossible in theory; easy in practice
Many dictionaries have this property — Will handle collisions a bit later
— Compiler: All possible identifiers allowed by the language vs.
those used in some file of one program .
hash function:
— Database: All possible student names vs. students enrolled index = h(key)
— Al: All possible chess-board configurations vs. those
considered by the current player
- key space (e.g., integers, strings) TableSize -1
1/26/2011 5 1/26/2011 6

1/26/2011

Who hashes what?

« Hash tables can be generic
— To store elements of type E, we just need E to be:
1. Comparable: order any two E (like with all dictionaries)
2. Hashable: convert any Eto ani nt

* When hash tables are a reusable library, the division of
responsibility generally breaks down into two roles:

client

« Wewill learn both roles, but most programmers “in the real world”
spend more time as clients while understanding the library

1/26/2011 7

More on roles

Some ambiguity in terminology on which parts are “hashing”

client

E)

T
“hashing’? “hashing"?

Two roles must both contribute to minimizing collisions (heuristically)
« Client should aim for different ints for expected items
— Avoid “wasting” any part of E or the 32 bits of the i nt
¢ Library should aim for putting “similar” i nt s in different indices
— conversion to index is aimost always “mod table-size”
— using prime numbers for table-size is common

1/26/2011 8

What to hash?

In lecture we will consider the two most common things to hash:
integers and strings

— Ifyou have objects with several fields, it is usually best to
have most of the “identifying fields” contribute to the hash to
avoid collisions

— Example:
class Person { . . .
String first; String mddle; String |ast;
int age;

}

— Aninherent trade-off: hashing-time vs. collision-avoidance
+ Bad idea(?): Only use first name
+ Good idea(?): Only use middle initial
+ Admittedly, what-to-hash is often an unprincipled guess ®
1/26/2011 9

Hashing integers

« key space = integers

« Simple hash function:
h(key) = key % Tabl eSi ze
— Client: f (x) = x
— Library g(x) = x % Tabl eSi ze
— Fairly fast and natural

* Example:
— TableSize = 10
— Insert 7, 18, 41, 34, 10

— (As usual, ignoring data “along for
the ride”)

© 00 N O b WNEFE O

1/26/2011 10

Hashing integers (Soln)

« key space = integers

0 10
« Simple hash function: 1 41
h(key) = key % Tabl eSi ze 2
— Client: f (x) = x 3
— Library g(x) = x % Tabl eSi ze 4 2
— Fairly fast and natural 5
« Example: 6
— TableSize = 10 7 7
— Insert 7, 18, 41, 34, 10 8 18
— (As usual, ignoring data “along for 9
the ride”)
1/26/2011 11

Collision-avoidance

« With“x % Tabl eSi ze” the number of collisions depends on
— the ints inserted (obviously)
— Tabl eSi ze

« Larger table-size tends to help, but not always
— Example: 7, 18, 41, 34, 10 with Tabl eSi ze = 10 and
Tabl eSi ze=7

« Technique: Pick table size to be prime. Why?

— Real-life data tends to have a pattern, and “multiples of 61"
are probably less likely than “multiples of 60”

— Later we'll see that one collision-handling strategy does
provably better with prime table size

1/26/2011 12

1/26/2011

More arguments for a prime table size

If Tabl eSi ze is 60 and...
— Lots of data items are multiples of 5, wasting 80% of table
— Lots of data items are multiples of 10, wasting 90% of table
— Lots of data items are multiples of 2, wasting 50% of table

If Tabl eSi ze is 61...
— Caollisions can still happen, but 5, 10, 15, 20, ... will fill table
— Caollisions can still happen but 10, 20, 30, 40, ... will fill table
— Collisions can still happen but 2, 4, 6, 8, ... will fill table
In general, if x and y are “co-prime” (means gcd(x, y) ==1), then
(a* x) %y == (b * x) %yifandonlyifa %y == b %y
— So good to have a Tabl eSi ze that has not common factors
with any “likely pattern” x

1/26/2011 13

What if the key is not an int?

« Ifkeys aren'ti nt s, the client must convert to an i nt
— Trade-off: speed and distinct keys hashing to distinct i nt s

« Very important example: Strings
— Key space K =5¢s;S,...S,1
« (where s; are chars: s; 0[0,52] or s; [[0,256] or s; [[0,216])
— Some choices: Which avoid collisions best?

1. h(K) = s, % TableSize

m-1
2. hK)= [Z s,] % TableSize
i=0

1/26/2011 14

-1
3. h(K)= (mz s [52ij % TableSize
0

Specializing hash functions

How might you hash differently if all your strings were web
addresses (URLs)?

1/26/2011 15

Additional operations

« How would we do the following in a hashtable?
— findMin()
— findMax()
— predecessor(key)
« Hashtables really not set up for these; need to search
everything, O(n) time
« Could try a hack:
— Separately store max & min values; update on insert &
delete

— What about ‘2" to max value’, predecessor, in-order
traversal, etc; those are fastin an AVL tree

1/26/2011 16

Hash Tables vs. Balanced Trees

« Interms of a Dictionary ADT for justi nsert,find,del ete,
hash tables and balanced trees are just different data structures
— Hash tables O(1) on average (assuming few collisions)
— Balanced trees O(l og n) worst-case

« Constant-time is better, right?
— Yes, but you need “hashing to behave” (avoid collisions)
— Yes, but fi ndM n, fi ndMax, pr edecessor , and
successor go from O(l og n) to O(n)

« Moral: If you need to use operations like f i ndM n, f i ndMax,
print Sorted, predecessor, and successor often then you
may prefer a balanced BST instead.

1/26/2011 17

Collision resolution

Collision:
When two keys map to the same location in the hash table

We try to avoid it, but number-of-keys exceeds table size

So hash tables should support collision resolution
— ldeas?

1/26/2011 18

1/26/2011

Separate Chaining

0 / Chaining: All keys that map to the same
1 7] table location are kept in a list
I (a.k.a. a “chain” or “bucket”)
2 /
3 / As easy as it sounds
4]
5 / Example: insert 10, 22, 107, 12, 42 with
6 | / mod hashing and Tabl eSi ze = 10
7 /
8 /
9 /
1/26/2011 19

Separate Chaining
0 | Chaining: All keys that map to the same
1 7] table location are kept in a list
I (a.k.a. a “chain” or “bucket”)
2 /
3 / As easy as it sounds
4]
5 / Example: insert 10, 22, 107, 12, 42 with
6 | / mod hashing and Tabl eSi ze = 10
7 /
8 /
9 /
1/26/2011 20

Separate Chaining

0 | Chaining: All !(eys that map to Fhe same
1 7] table location are kept in a list
I (a.k.a. a “chain” or “bucket”)
2|
3 / As easy as it sounds
4]
5 / Example: insert 10, 22, 107, 12, 42 with
6 | / mod hashing and Tabl eSi ze = 10
7 /
8 /
9 /
1/26/2011 21

Separate Chaining
0 | Chaining: All keys that map to the same
1 7] table location are kept in a list
I (a.k.a. a “chain” or “bucket”)
2|
3 / As easy as it sounds
4]
5 / Example: insert 10, 22, 107, 12, 42 with
6 | / mod hashing and Tabl eSi ze = 10
7 | q—tof/]
8 /
9 /
1/26/2011 22

Separate Chaining

Chaining: All keys that map to the same
table location are kept in a list

0| —
1 / whAiY ap "
I (a.k.a. a “chain” or “bucket”)
2 | i
3 / As easy as it sounds
41/
5 / Example: insert 10, 22, 107, 12, 42 with
6 | / mod hashing and Tabl eSi ze = 10
7| q—iof/]
8 /
9 /
1/26/2011 23

Separate Chaining

Chaining: All keys that map to the same
table location are kept in a list

0 —

17/ (a.k.a. a “chain” or “bucket”)

2 | e 4—{12 4

3 / As easy as it sounds

41/

5 / Example: insert 10, 22, 107, 12, 42 with
6 [7| mod hashing and Tabl eSi ze =10
7| q—iof/]

8 /

9 ; Worst case time for find?

1/26/2011 24

1/26/2011

Thoughts on separate chaining

* Worst-case time for fi nd?
— Linear
— But only with really bad luck or bad hash function
— So not worth avoiding (e.g., with balanced trees at each bucket)
« Keep # of items in each bucket small
« Overhead of AVL tree, etc. not worth it for small n

« Beyond asymptotic complexity, some “data-structure engineering”
may be warranted

— Linked list vs. array or a hybrid of the two
— Move-to-front (part of Project 2)

— Leave room for 1 element (or 2?) in the table itself, to optimize
constant factors for the common case

« Atime-space trade-off...

1/26/2011 25

Time vs. space (constant factors only here)

0 z 0] 10|/
1 / 1 /| X
2 | -3 3] 2 | 42| g 4]
3 / 3 /| X
4 / 4 /| X
5 / 5 /| X
6 / 6 /| X
7 1 017] 7 |107] 1
8 / 8 /| X
9 / 9 /| X
1/26/2011 26

More rigorous separate chaining analysis
Definition: The load factor, A, of a hash table is

A= N «~ number of elements
TableSize

Under chaining, the average number of elements per bucketis
So if some inserts are followed by random finds, then on average:
« Each unsuccessful f i nd compares against items

« Each successful f i nd compares against items

« How big should TableSize be??

1/26/2011 27

More rigorous separate chaining analysis
Definition: The load factor, A, of a hash table is

A= N «~ number of elements
TableSize

Under chaining, the average number of elements per bucket is A

So if some inserts are followed by random finds, then on average:
« Each unsuccessful f i nd compares against A items

« Each successful f i nd compares against A/ 2 items

« If Aislow, find & insert likely to be O(1)

« We like to keepd around 1 for separate chaining

1/26/2011 28

Separate Chaining Deletion?

1/26/2011 29

Separate Chaining Deletion

* Not too bad

0 —
— Find in table 1]
— Delete from bucket 2 | - F—a F—p7]
+ Say, delete 12 3|
« Similar run-time as insert 4 7]
5 [/]
6 | /|
7 | 4—hot/]
8 [/]
0 1
1/26/2011 30

