CSE332: Data Abstractions
Lecture 8: Memory Hierarchy & B Trees

Ruth Anderson
Winter 2011

Announcements

- Project 2 – posted!
 Partner selection due by 11pm Tues 1/25 at the latest.
- Homework 2 – due NOW!
- Homework 3 – due Friday Jan 28th posted later today

Today

- Dictionaries
 - AVL Trees (finish up)
- The Memory Hierarchy and you
- Dictionaries
 - B-Trees

Why do we need to know about the memory hierarchy?

- One of the assumptions that Big-Oh makes is that all operations take the same amount of time.
- Is that really true?

Now what?

- We have a data structure for the dictionary ADT (AVL tree) that has worst-case $O(\log n)$ behavior
 - One of several interesting/fantastic balanced-tree approaches
- We are about to learn another balanced-tree approach: B Trees
- First, to motivate why B trees are better for really large dictionaries (say, over 1GB = 2^{30} bytes), need to understand some memory-hierarchy basics
 - Don’t always assume “every memory access has an unimportant $O(1)$ cost”
 - Learn more in CSE351/333/471 (and CSE378), focus here on relevance to data structures and efficiency

A typical hierarchy

Every desktop/laptop/server is different but here is a plausible configuration these days

CPU

L1 Cache: 128KB = 2^{17}
get data in L1: 2^{29}/sec = 2 instructions

L2 Cache: 2MB = 2^{21}
get data in L2: 2^{25}/sec = 30 instructions
get data in main memory: 2^{24}/sec = 250 instructions
get data from "new place" on disk:
2^{7}/sec = 8,000,000 instructions

Main memory: 2GB = 2^{31}

Disk: 1TB = 2^{40}
Morals
It is much faster to do:
- 5 million arithmetic ops 1 disk access
- 2500 L2 cache accesses 1 disk access
- 400 main memory accesses 1 disk access

Why are computers built this way?
- Physical realities (speed of light, closeness to CPU)
- Cost (price per byte of different technologies)
- Disks get much bigger not much faster
 - Spinning at 7200 RPM accounts for much of the slowness and unlikely to spin faster in the future
- Speedup at higher levels (e.g. a faster processor) makes lower levels relatively slower
- Later in the course: more than 1 CPU!

“Fuggedaboutit”, usually
The hardware automatically moves data into the caches from main memory for you
- Replacing items already there
- So algorithms must faster if “data fits in cache” (often does)

Disk accesses are done by software (e.g., ask operating system to open a file or database to access some data)

So most code “just runs” but sometimes it’s worth designing algorithms / data structures with knowledge of memory hierarchy
- And when you do, you often need to know one more thing...

How does data move up the hierarchy?
- Moving data up the memory hierarchy is slow because of latency (think distance-to-travel)
 - Since we’re making the trip anyway, may as well carpool
 • Get a block of data in the same time it would take to get a byte
 • Sends nearby memory because:
 - It’s easy
 - And likely to be asked for soon (think fields/arrays)
 - Side note: Once a value is in cache, may as well keep it around for awhile; accessed once, a value is more likely to be accessed again in the near future (more likely than some random other value)

Locality
Temporal Locality (locality in time) – If an item is referenced, it will tend to be referenced again soon.

Spatial Locality (locality in space) – If an item is referenced, items whose addresses are close by will tend to be referenced soon.

Connection to data structures
- An array benefits more than a linked list from block moves
 - Language (e.g., Java) implementation can put the list nodes anywhere, whereas array is typically contiguous memory (Note: “array” doesn’t necessarily mean “good”)
- Binary heaps “make big jumps” to percolate (different block)

Block/line size
- The amount of data moved from disk into memory is called the “block” size or the “page” size
 - Not under program control
- The amount of data moved from memory into cache is called the cache “line” size
 - Not under program control
BSTs?

- Since looking things up in balanced binary search trees is \(O(\log n) \), even for \(n = 2^{19} \) (512GB) we don't have to worry about minutes or hours.
- Still, number of disk accesses matters:
 - AVL tree could have height of, say, 55.
 - Which, based on our proof, is a lot of nodes.
 - Most of the nodes will be on disk; the tree is shallow, but it is still many gigabytes big so the tree cannot fit in memory.
 - Even if memory holds the first 25 nodes on our path, we still need 30 disk accesses.

Note about numbers; moral

- All the numbers in this lecture are “ballpark” “back of the envelope” figures.
- Even if they are off by, say, a factor of 5, the moral is the same: If your data structure is mostly on disk, you want to minimize disk accesses.
- A better data structure in this setting would exploit the block size and relatively fast memory access to **avoid disk accesses**...

Trees as Dictionaries

(N = 10 million)

In worst case, each node access is a disk access, number of accesses:

- BST
- AVL
- B Tree

Our goal

- **Problem**: A dictionary with so much data most of it is on disk.
- **Desire**: A balanced tree (logarithmic height) that is even shallower than AVL trees so that we can minimize disk accesses and exploit disk-block size.
- **A key idea**: Increase the branching factor of our tree.