Today

- Dictionaries
- Trees

Where we are

Studying the absolutely essential ADTs of computer science and classic data structures for implementing them

ADTs so far:
1. Stack: push, pop, isEmpty, ...
2. Queue: enqueue, dequeue, isEmpty, ...
3. Priority queue: insert, deleteMin, ...
 - probably the most common, way more than priority queue

The Dictionary (a.k.a. Map) ADT

- Data:
 - set of (key, value) pairs
 - keys must be comparable (< or > or =)
- Primary Operations:
 - insert(key, val): places (key, val) in map
 • If key already used, overwrites existing entry
 - find(key): returns val associated with key
 - delete(key)

The Dictionary (a.k.a. Map) ADT

- Data:
 - set of (key, value) pairs
 - keys must be comparable
- Insert:
 - rwh
 - sbfan
 - armstr
- Operations:
 - find(key, val)
 - insert(key)
 - delete(key)

Will tend to emphasize the keys, don't forget about the stored values
Comparison: Set ADT vs. Dictionary ADT

The Set ADT is like a Dictionary without any values
- A key is present or not (no repeats)

For find, insert, delete, there is little difference
- In dictionary, values are “just along for the ride”
- So same data-structure ideas work for dictionaries and sets
 - Java HashSet implemented using a HashMap, for instance

Set ADT may have other important operations
- union, intersection, is_subset
- notice these are operators on 2 sets

Dictionary data structures

Will spend the next 1.5-2 weeks looking at dictionaries with three different data structures

1. AVL trees
 - Binary search trees with guaranteed balancing
2. B-Trees
 - Also always balanced, but different and shallower
 - B!=Binary; B-Trees generally have large branching factor
3. Hash tables
 - Not tree-like at all

Skipping: Other balanced trees (red-black, splay)

But first some applications and less efficient implementations...

A Modest Few Uses

Any time you want to store information according to some key and be able to retrieve it efficiently
- Lots of programs do that!

- Networks: router tables
- Operating systems: page tables
- Compilers: symbol tables
- Databases: dictionaries with other nice properties
- Search: inverted indexes, phone directories, ...
- Biology: genome maps
- ...

Simple implementations

For dictionary with n key/value pairs

<table>
<thead>
<tr>
<th>insert</th>
<th>find</th>
<th>delete</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(1)^*$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>$O(1)^*$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>$O(n)$</td>
</tr>
</tbody>
</table>

We’ll see a Binary Search Tree (BST) probably does better, but not in the worst case unless we keep it balanced

Lazy Deletion

A general technique for making delete as fast as find:
- Instead of actually removing the item just mark it deleted

Note: If we do not allow duplicates values to be inserted, we would need to do $O(n)$ work to check for a key’s existence before insertion
Some tree terms (mostly review)

- There are many kinds of trees
 - Every binary tree is a tree
 - Every list is kind of a tree (think of “next” as the one child)

- There are many kinds of binary trees
 - Every binary min heap is a binary tree
 - Every binary search tree is a binary tree

- A tree can be balanced or not
 - A balanced tree with \(n \) nodes has a height of \(O(\log n) \)
 - Different tree data structures have different “balance conditions” to achieve this

Binary Trees

- Binary tree is empty or
 - a root (with data)
 - a left subtree (maybe empty)
 - a right subtree (maybe empty)

- Representation:

```
  Data
  /    \
left  right
    /    \
```

- For a dictionary, data will include a key and a value

Binary Tree: Some Numbers

Recall: height of a tree = longest path from root to leaf (count # of edges)

For binary tree of height \(h \):
- max # of leaves: \(2^h \)
- max # of nodes: \(2^{h+1} - 1 \)
- min # of leaves: \(1 \)
- min # of nodes: \(h + 1 \)

For \(n \) nodes, we cannot do better than \(O(\log n) \) height, and we want to avoid \(O(n) \) height

Calculating height

What is the height of a tree with root \(x \)?

```java
int treeHeight(Node root) {
    return -1;
    return 1 + max(treeHeight(root.left),
                   treeHeight(root.right));
}
```

Running time for tree with \(n \) nodes: \(O(n) \) — single pass over tree

Note: non-recursive is painful — need your own stack of pending nodes; much easier to use recursion’s call stack
Tree Traversals

A traversal is an order for visiting all the nodes of a tree

- **Pre-order**: root, left subtree, right subtree
- **In-order**: left subtree, root, right subtree
- **Post-order**: left subtree, right subtree, root

(an expression tree)

More on traversals

```java
void inOrderTraversal(Node t)
{
    if (t != null) {
        traverse(t.left);
        process(t.element);
        traverse(t.right);
    }
}
```

Sometimes order doesn’t matter
- Example: sum all elements

Sometimes order matters
- Example: print tree with parent above indented children (pre-order)
- Example: evaluate an expression tree (post-order)

Binary Search Tree

- **Structural property** ("binary")
 - each node has ≤ 2 children
 - result: keeps operations simple

- **Order property**
 - all keys in left subtree smaller than node’s key
 - all keys in right subtree larger than node’s key
 - result: easy to find any given key

Are these BSTs?

```
Data find(Key key, Node root){
    if(root == null)
        return null;
    if(key < root.key)
        return find(key,root.left);
    if(key > root.key)
        return find(key,root.right);
    return root.data;
}
```

Find in BST, Recursive
Find in BST, Iterative

```java
Data find(Key key, Node root) {
    while (root != null && root.key != key) {
        if (key < root.key) root = root.left;
        else if (key > root.key) root = root.right;
        if (root == null) return null;
    }
    return root.data;
}
```

Other “finding operations”

- Find minimum node
- Find maximum node
- Find predecessor?
- Find successor?

Insert in BST

```
insert(13)
insert(8)
insert(31)
```

(New) insertions happen only at leaves – easy!

Deletion in BST

```
delete(17)
```

Why might deletion be harder than insertion?

Deletion

- Removing an item disrupts the tree structure
- Basic idea: find the node to be removed, then “fix” the tree so that it is still a binary search tree
- Three cases:
 - node has no children (leaf)
 - node has one child
 - node has two children

Deletion – The Leaf Case
Deletion – The One Child Case

```
delete(15)
```

Deletion – The Two Child Case

```
delete(5)
```

What can we replace 5 with?

BuildTree for BST

```
We had buildHeap, so let’s consider buildTree
```

Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST

- If inserted in given order, what is the tree?
- What big-O runtime for this kind of sorted input?
- Is inserting in the reverse order any better?

BuildTree for BST

```
Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST
```

- What we if could somehow re-arrange them
 - median first, then left median, right median, etc.
 - 5, 3, 7, 2, 1, 4, 8, 6, 9
- What tree does that give us?
- What big-O runtime?
BuildTree for BST

- Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST
- What if we could somehow re-arrange them
 - median first, then left median, right median, etc.
 - 5, 3, 7, 2, 1, 4, 8, 6, 9
- What tree does that give us?
- What big-O runtime?

\[O(n \log n), \text{ definitely better} \]

Unbalanced BST

- Balancing a tree at build time is insufficient, as sequences of operations can eventually transform that carefully balanced tree into the dreaded list
- At that point, everything is \(O(n) \) and nobody is happy
 - find
 - insert
 - delete

Balanced BST

Observation
- BST: the shallower the better!
- For a BST with \(n \) nodes inserted in arbitrary order
 - Average height is \(O(\log n) \) – see text for proof
 - Worst case height is \(O(n) \)
- Simple cases such as inserting in key order lead to the worst-case scenario

Solution: Require a Balance Condition that
1. ensures depth is always \(O(\log n) \) – strong enough!
2. is easy to maintain – not too strong!

Potential Balance Conditions

1. Left and right subtrees of the root have equal number of nodes
2. Left and right subtrees of the root have equal height
3. Left and right subtrees of every node have equal number of nodes
4. Left and right subtrees of every node have equal height
Potential Balance Conditions

3. Left and right subtrees of every node have equal number of nodes
 - Too strong!
 - Only perfect trees \(2^n - 1\) nodes

4. Left and right subtrees of every node have equal height
 - Too strong!
 - Only perfect trees \(2^n - 1\) nodes

The AVL Balance Condition

Left and right subtrees of every node have heights differing by at most 1

Definition: \(\text{balance}(n) = \text{height}(n).\text{left} - \text{height}(n).\text{right}\)

AVL property: for every node \(n\), \(-1 \leq \text{balance}(n) \leq 1\)

- Ensures small depth
 - Will prove this by showing that an AVL tree of height \(h\) must have a number of nodes exponential in \(h\)

- Easy (well, efficient) to maintain
 - Using single and double rotations