
1/21/2011 1

B-Trees
(4.7 in Weiss)

1/21/2011 2

M-ary Search Tree

• Maximum branching factor of M

• Tree with N values has height =

disk accesses for find:

Runtime of find:

1/21/2011 3

Solution: B-Trees

• specialized M-ary search trees

• Each node has (up to) M-1 keys:
– subtree between two keys x and y contains

leaves with values v such that
x ≤ v < y

• Pick branching factor M
such that each node
takes one full
{ page, block}
of memory

3 7 1221

x<3 3≤x<7 7≤x<12 12≤x<21 21≤x

1/21/2011 4

B-Trees

What makes them disk-friendly?

1. Many keys stored in a node
• All brought to memory/cache in one access!

2. Internal nodes contain only keys;
Only leaf nodes contain keys and actual data
• The tree structurecan be loaded into memory

irrespective of data object size

• Data actually resides in disk

1/21/2011 5

B-Tree: Example

B-Tree with M = 4 (# pointers in internal node)

and L = 4 (# data items in Leaf)

1
AB

2
xG 3 5 6 9

10 11 12

15 17

20 25 26

30 32 33 36

40 42

50 60 70

1040

3 152030 50

Note: All leaves at the same depth!

Data objects, that I’ll ignore in slides
1/21/2011 6

B-Tree Properties ‡

– Data is stored at the leaves

– All leavesare at the same depth and contain between
L/2 andL data items

– Internalnodes store up to M-1 keys

– Internalnodes have between M/2 and M children

– Root(special case) has between 2 and M children
(or root could be a leaf)

‡These are technically B+-Trees

1/21/2011 7

Example, Again

B-Tree with M = 4

and L = 4

1 2

3 5 6 9

10 11 12

15 17

20 25 26

30 32 33 36

40 42

50 60 70

1040

3 152030 50

(Only showing keys, but leaves also have data!)
1/21/2011 8

B-trees vs. AVL trees

Suppose we have 100 million items (100,000,000):

• Depth of AVL Tree

• Depth of B+ Tree with M = 128, L = 64

1/21/2011 9

Building a B-Tree

The empty
B-Tree

M = 3 L = 2

3
Insert(3)

3 14
Insert(14)

Now, Insert(1)?

1/21/2011 10

Splitting the Root

And create
a new root

1 3 14

1 3 14

14

1 3 14
3 14

Insert(1)

Too many
keys in a leaf!

So, split the leaf.

M = 3 L = 2

1/21/2011 11

Overflowing leaves

Insert(59)

14

1 3 14 59

14

1 3 14

Insert(26)

14

1 3

14 26 59

1459

1 3 14 26 59

And add
a new child

Too many
keys in a leaf!

So, split the leaf.

M = 3 L = 2

1/21/2011 12

Propagating Splits

1459

1 3 14 26 59

1459

14 26 59

1 3 5

Insert(5)

5 14

14 26 591 3 5

59

5 595

1 3 5 14 26 59

59

14

Add new
child

Create a
new root

Split the leaf, but no space in parent!

So, split the node.

M = 3 L = 2

1/21/2011 13

Insertion Algorithm

1. Insert the key in its leaf

2. If the leaf ends up with L+1
items, overflow!
– Split the leaf into two nodes:

• original with (L+1)/2 items

• new one with (L+1)/2 items

– Add the new child to the parent
– If the parent ends up with M+1

items, overflow!

3. If an internal node ends up
with M+1 items, overflow!
– Split the node into two nodes:

• original with (M+1)/2 items

• new one with (M+1)/2 items

– Add the new child to the parent
– If the parent ends up with M+1

items, overflow!

4. Split an overflowed root in two
and hang the new nodes under
a new root

This makes the tree deeper!

1/21/2011 14

After More Routine Inserts

5

1 3 5 14 26 59

59

14

5

1 3 5 14 26 59 79

5989

14

89

Insert(89)
Insert(79)

M = 3 L = 2

1/21/2011 15

Deletion

5

1 3 5 14 26 59 79

5989

14

89

5

1 3 5 14 26 79

79 89

14

89

Delete(59)

What could go wrong?

1. Delete item from leaf
2. Update keys of ancestors if necessary

M = 3 L = 2

1/21/2011 16

Deletion and Adoption

5

1 3 5 14 26 79

7989

14

89

Delete(5)
?

1 3 14 26 79

7989

14

89

3

1 3 3 14 26 79

7989

14

89

A leaf has too few keys!

So, borrow from a sibling

M = 3 L = 2

1/21/2011 17

Does Adoption Always Work?

• What if the sibling doesn’t have enough for you to
borrow from?

e.g. you have L/2-1 and sibling has L/2 ?

1/21/2011 18

Deletion and Merging

3

1 3 14 26 79

7989

14

89

Delete(3)
?

1 14 26 79

7989

14

89

1 14 26 79

7989

14

89

A leaf has too few keys!

And no sibling with surplus!

So, delete
the leaf

But now an internal node
has too few subtrees!

M = 3 L = 2

1/21/2011 19

Adopt a
neighbor

1 14 26 79

7989

14

89

14

1 14 26 79

89

79

89

Deletion with Propagation
(More Adoption)

M = 3 L = 2

1/21/2011 20

Delete(1)
(adopt a
sibling)

14

1 14 26 79

89

79

89

A Bit More Adoption

26

14 26 79

89

79

89

M = 3 L = 2

1/21/2011 21

Delete(26)
26

14 26 79

89

79

89

Pulling out the Root

14 79

89

79

89

A leaf has too few keys!
And no sibling with surplus!

14 79

89

79

89

So, delete
the leaf;
merge

A node has too few subtrees
and no neighbor with surplus!

14 79

7989

89

Delete
the node

But now the root
has just one subtree!

M = 3 L = 2

1/21/2011 22

Pulling out the Root (continued)

14 79

7989

89

The root
has just one subtree!

14 79

7989

89

Simply make
the one child
the new root!

M = 3 L = 2

1/21/2011 23

Deletion Algorithm

1. Remove the key from its leaf

2. If the leaf ends up with fewer
than L/2 items, underflow!
– Adopt data from a sibling;

update the parent

– If adopting won’t work, delete
node and merge with neighbor

– If the parent ends up with
fewer thanM/2 items,
underflow!

1/21/2011 24

Deletion Slide Two
3. If an internal node ends up with

fewer than M/2 items, underflow!
– Adopt from a neighbor;

update the parent

– If adoption won’t work,
merge with neighbor

– If the parent ends up with fewer than
M/2 items, underflow!

4. If the root ends up with only one
child, make the child the new root
of the tree

This reduces the
height of the tree!

1/21/2011 25

Thinking about B-Trees

• B-Tree insertion can cause (expensive) splitting
and propagation

• B-Tree deletion can cause (cheap) adoption or
(expensive) deletion, merging and propagation

• Propagation is rare if M and L are large
(Why?)

• If M = L = 128, then a B-Tree of height 4 will
store at least 30,000,000 items

1/21/2011 26

Tree Names You Might Encounter

FYI:
– B-Trees with M = 3, L = x are called 2-3 trees

• Nodes can have 2 or 3 pointers

– B-Trees withM = 4, L = x are called 2-3-4 trees
• Nodes can have 2, 3, or 4 pointers

1/21/2011 2727

Determining M and L for a B-Tree
1 Page on disk = 1 KByte

Key = 8 bytes, Pointer = 4 bytes

Data = 256 bytes per record (includes key)

Student Activity

M =

L =

