CSE 332 Winter 2011

CSE 332 Data Abstractions, Winter 2011

Homework 4

Due Friday, Feb 11, 2011 at the beginning of lecture. Please be sure your work is readable (either
written clearly or typed). This homework has four problems. Please write your section at the top of
your homework.

Problem 1: Algorithm Analysis

The methods below implement recursive algorithms that return the first index in an unsorted array to

hold 17, or -1 if no such index exists.

int firstl7 a(int[] array, int i) { int firstl7 b(int[] array, int i) {
if (i >= array.length) return -1; if (i >= array.length) return -1;
if (array[i]==17) return O; if (array[i]==17) return O;
if (firstl7_a(array,i+1) == -1) int x = firstl7 _b(array,i+1);
return -1; if (x ==-1) return -1;
return 1 + firstl7_a(array,i+1); return x + 1;
} }

(a) What kind of input produces the worst-case running time for first17_a(arr,0)?

(b) For first17_a, give a recurrence relation, including a base case, describing the worst-case running
time, where n is the length of the array. You may use whatever constants you wish for constant-time
work.

(c) Give a tight asymptotic (“big-Oh”) upper bound for the running time of first17_a(arr,0) given your
answer to the previous question.

(d) What kind of input produces the worst case running time for first17_b(arr,0)?

(e) For first17_b, give a recurrence relation, including a base case, describing the worst-case running
time, where n is the length of the array. You may use whatever constants you wish for constant-time
work.

(f) Give a tight asymptotic (“big-Oh”) upper bound for the running time of first17_b(arr,0) given your
answer to the previous question.

(g) Give a tight asymptotic (“big-Omega”) worst-case lower bound for the problem of finding the first 17
in an array (not a specific algorithm). Briefly justify your answer.

Problem 2: Sorting Phone Numbers
The input to this problem consists of a sequence of 7-digit phone numbers written as simple integers

(e.g. 5551212 represents the phone number 555-1212). The sequence is provided via an
Iterator<integer>. No number appears in the input more than once but there is no other limit on the size
of the input. Write precise (preferable Java-like) pseudocode for a method that prints out the phone
numbers (as integers) in the list in ascending order. Your solution must not use more than 2MB of
memory. (Note: It cannot use any other storage — hard drive, network, etc.) Explain why your solution is
under the 2MB limit.

(See back of this page for remaining problems)

Page 1 of 2

CSE 332 Winter 2011

Problem 3: QuickSort Variation
Consider this pseudocode for quicksort, which leaves pivot selection and partitioning to helper functions

not shown:

/1 sort positions lo through hi-1 in array using quicksort (no cut-off)
qui cksort(int[] array, int lo, int hi) {

if (lo>=hi-1) return;

pi vot = pickPivot(array,|l o, hi);

pi votl ndex = partition(array,| o, hi,pivot);

qui cksort (array, | o, pi vot | ndex) ;

qui cksort (array, pi vot | ndex+1, hi);

}

Modify this algorithm to take an additional integer argument enough:

/1 sort at |east enough positions of o through hi-1 in array using quicksort
(no cut-off)
qui cksort(int[] array, int lo, int hi, int enough) { ... }

We change the definition of correctness to require only that at least the first ‘enough’ entries (from left-
to right) are sorted and contain the smallest enough values. (If enough >= hi-lo, then the whole range
must be sorted as usual.) While one correct solution is to ignore the enough parameter, come up with a
better solution that skips completely unnecessary recursive calls. Assume the initial call to quicksort
specifies that ‘lo’ is 0 and ‘hi’ is the upper-bound of the array. Watch your off-by-one errors!

Problem 4: Decision Trees

Each of the sorting algorithms we discussed in class, with the exception of bucket/radix sort, can be
translated into a specific decision tree. In this question, you'll give the decision tree for three sorting
algorithms for a very small sized input. Assume you have an array with exactly three keys: [a, b, c].
Assume there are no duplicate keys. For each of the following sorting algorithms, give the full decision
tree. Draw your decision tree in the style of slides 10 and 12 from the Beyond Comparison sorting
lecture (with possible orderings in each node, and each branch species a comparison). Be sure to draw
an edge for every comparison that the algorithm does, regardless of whether there are multiple
orderings possible at that point or not. Feel free to annotate your tree with other information such as
the current state of the array at that point in the algorithm if you find it helpful to do so.

(a) selection sort (use the code below, assume that “Find index of smallest entry” loops from left to

right over the unsorted portion of the array):
void SelectionSort (Array a[0..n-1]) {
for (i=0, i<n; ++i) {
j = Find index of smallest entry in a[i..n-1];
Swap(a[i],a[j]);

}

(b) insertion sort (use the code from p. 249 in Weiss)

(c) merge sort (use the code on p. 260 and p. 261 in Weiss)

(d) Considering only number of comparison operations, which of these three algorithms is the most
efficient for a 3-element array? Explain why in terms of your decision trees.

(e) Considering only number of comparison operations, which of these three algorithms is the least
efficient for a 3-element array? Explain why in terms of your decision trees.

Page 2 of 2

