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CSE 332 Data Abstractions, Winter 2011 

Homework 1 

Due Friday, Jan 14, 2011 at the beginning of lecture.  Please be sure your work is readable (either 

written clearly or typed).  This homework has six problems. 

Problem 1:  Recurrence Relations 

Consider the following recurrence relation, similar to one seen in lecture 3:  

T(1)=5, and for n greater than 1,  )2/(21)( nTnT +=  

Note:  2/n  is the ‘floor’ of ‘n/2’: it rounds down to the next largest integer. 

a. Give T(n) for n=integers 1 through 8 

b. Expand the recurrence relation to get the closed form, as seen in lecture #3.  Show your work; do not 

just show the final equation. 

 

Problem 2:  Induction 

For the following inductive proofs, clearly state the base case, induction step and inductive hypothesis, as 

described in lecture. 

a. Prove Weiss  1.12.a by induction 

b. Prove the following by induction:          

 

Problem 3:  Run-times 
 

Say we have 4 versions of a program we’d like to run on some input n.  Each takes a certain amount of time to run, 

as a function of n: 

• P1 takes n days to run 

• P2 takes n
2
 days to run 

• P3 takes 2
n
 days to run 

• P4 takes log2n days to run 

So, to run P2 on an n of 4 would take 16 days. 

 

a.  For each version of the program, calculate the value of n (rounded down) we could compute if we let 

the program run for 12 billion years , which is (very) roughly how long until the Earth’s sun dies.  You can leave the 

answer in scientific notation, or as 2 raised to some power in scientific notation. 

 

b. Let’s say we have access to a computer which runs one million times faster than the one above; so we 

could compute P1(1) in one millionth of a day.  Write out the n we could compute for each of the above algorithms 

given this new processing power. 

 

 

(See back of this page for remaining problems) 
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Problem 4: Horner’s Rule 
 

The classic way to evaluate a polynomial is called Horner’s rule, which can be stated recursively as follows: 

  

 Let p(x) = a0 + a1x + a2x
2
+ · · · + anx

n 

 

 To compute p(c) for some constant c, first evaluate q(c) where : 

 

  q(x) = a1 + a2x + · · · + anx
n-1 

 

 recursively, then:  

 

  p(c) = a0 + cq(c). 

 

1. Provide a base case for this method.  That is, explain how to do the “last step” without recursion. 

2. Prove, by induction, that Horner’s method, including your base case, works for any n.  That is, prove it 

works for a polynomial of any degree. 

3. For a polynomial of degree n, as a function of n, how many additions and how many multiplications are 

used to evaluate the polynomial in Horner’s rule. 

4. Provide an elegant, non-recursive pseudocode function for Horner’s rule where the coefficients are 

stored in an array A[0…n], with A[i] containing ai.  Hint: this can be done in about 5 lines of code 

 

Problem 5. Big Oh Notation 
 

For each of the following, either prove true (using our definitions for Big Oh, Big Omega and Big Theta, as 

appropriate) or explain why it is false: 

 

a. If we have an algorithm that runs in O(n) time, and make some changes that cause it to run 10 times 

slower, it will still run in O(n) time. 

 

b. If f(n) = O(g(n)) and h(n) = O(k(n)), then f(n) − h(n) = O(g(n) − k(n)). 

 

c. If f(n) = O(g(n)) and h(n) = O(k(n)), then f(n) + h(n) = O(g(n) + k(n)). 

 

d. (2
n+1

) = Θ(2
n
) 

 

e. (2
n
)

1/3
 = Θ(2

n
) 

 

Problem 6. Algorithm analysis 
 

Weiss 2.7a (give the best big-O bound you can for each of the 6 program fragments; you do not need to explain 

why). 

 


