CSE332 Week 1 Section Worksheet Solutions

1. Prove f(n) is O(g(n)) where

a.

f(n)=7n

g(n)=n/10

Solution:

There are an infinite # of possible solutions; n0=1 & c=70 works
b.

f(n)=1000

g(n)=3n3
Solution:

n0=1 & c=400 works

c.

f(n)=7n2+3n

g(n)=n4

Solution:

n0=1 & c=10 works

d.

f(n)=n+nlogn

g(n)=2nlogn

Solution:

Assuming base 2, n0=2 & c=1 works
2. True or false
a. f(n) is Θ(g(n)) implies f(n) is O(g(n))

Solution:

True: Based on our definition of Θ, f(n) is O(g(n))

b. f(n) is Θ(g(n)) implies g(n) is Θ(f(n))

Solution:

True: Intuitively, Θ is like ‘=’, and so is symmetric.

More specifically, we know

f is O(g) & f is Ω(g)

so

There exist positive # c, c’, n0 & n0’ such that

f(n)<=cg(n) for all n>=n0

and

f(n)>=c’g(n) for all n>=n0’

so

g(n)<=f(n)/c’ for all n>=n0’

and

g(n)>=f(n)/c for all n>=n0

so g is O(f) and g is Ω(f)
so g is Θ(f)
c. f(n) is O(g(n)) implies g(n) is O(f(n))

Solution:

False: Counter example: f(n)=n & g(n)=n2
3. Find functions f(n) and g(n) such that f(n) is O(g(n)) and the constant c for the definition of O() must be >1. That is, find f & g such that c must be greater than 1, as there is no sufficient n0 when c=1.

Consider

f(n)=n+1

g(n)=n

we know f(n) is O(g(n)); both run in linear time
Yet f(n)>g(n) for all values of n; no n0 we pick will help with this if we set c=1.

Instead, we need to pick c to be something else; say, 2.

4. What’s the O() run-time of this code fragment in terms of n:

a)
int x=0;

for(int i=n;i>=0;i--)

if((i%3)==0) break;

else x+=n;

Solution:

At a glance we see a loop and it looks like it should be O(n); it looks like we go through

the loop n times.

However, that ‘break’ makes things a bit weirder. Consider how the loop will work for

any real data; we start at some n, count backwards until the value is a multiple of 3, at

which point we break.

So the loop’s code will run at most 3 times (not a function of n); so the whole thing is

O(1).

b)
int x=0;

for(int i=0;i<n;i++)

for(int j=0; j<(n*n/3); j++)

x+=j;

Solution:

The outer loop linear, the inner loop is quadratic, and so the innermost statement is in constant time, so the entire things is O(n3)

c)
int x=0;

for(int i=0;i<n;i++)

for(int j=0; j<(i/2); j++)

x+=j;
Solution:

O(n2)

