
Project 2 for CSE 332 (Spring 2011)

Dictionary Face-Off
Phase A due Wednesday, April 27 at 11:00 PM via Catalyst CollectIt.
Phase B due Tuesday, May 3 at 11:00 PM via Catalyst CollectIt.

CSE 332: Data Abstractions
The University of Washington, Seattle, Spring 2011
© Steve Tanimoto, April, 2011

Overview: In this project you will create two or more implementations of the Dictionary
ADT. In Phase A, each partner will create an applet that features one dictionary
implementation. In Phase B, the team will work together to combine the dictionary
implementations in a special way. There will be a new data structure, called a Redundant
Array of Different Dictionary Implementations (“RADDI”) that functions like a list of
dictionaries but responds to commands as described in this document. Teams of either two
or three students are acceptable.

Purposes: (a) gain implementation experience with dictionary ADTs, (b) learn how to
instrument a data structure to measure its performance, (c) perform actual experiments that
reveal the different behavior of alternative approaches to dictionary implementation, and (d)
have fun predicting which data structures will do better in various use cases.

Resources Provided: You'll start with the following resources:
1. The Visual Stack Applet and associated files from Project 1.
2. A “Visual Binary Tree Applet" that handles the graphical layout of binary trees. This will
simplify the graphical part of the implementation of any of the tree-based dictionary
implementations.

Required Functionality for Phase A: You will select two data structures (one per partner)
from the following list. Note that if one partner chooses hashtable, then the other partner(s)
choose among AVL trees and B-Trees, etc. If a team has three partners, then all three
types of data structures will be covered.

Choice list:
 AVL Trees
 B-Trees with any fixed M>2
 Hashtable with given capacity.

Then you'll implement the following new required functionality:

a. Basic dictionary operations – INSERT, FIND and DELETE. However, each operation will

have a slightly special meaning. It will take a single argument (a key) which is a word (a
string of letters – any other character after the first letter signifies the end of the word). The
word is then converted to all lower-case characters (if it wasn't already). Your dictionaries
will be used to count occurrences of words (again, actually just strings). The command
“INSERT apple” will first do a FIND on “apple”. If there is no entry in the dictionary for
“apple” then INSERT puts a new entry into the dictionary and gives it a value of 1. If there
already is an entry for “applet”, then its value is incremented by 1. A FIND operation will
return 0 if there is no entry for the given word; otherwise, it returns the numeric value
associated with the word. DELETE causes the entry corresponding to its argument to be
removed from the tree. (You may use lazy deletion to implement the DELETE operation ---
by setting the value to 0, but extra credit will be awarded for implementing the real, non-lazy
method(s). If you implement non-lazy deletion, then also implement lazy deletion and
include support for a command LAZY_DELETION that is used with an argument that is
either “on” or “off” to control what form of deletion the DELETE command will then use.)

b. Extended dictionary operations KEYS, PAIRS, SIZE, INSERT-FILE, INSERT-TEXT and
STATS.

The KEYS operation outputs a list of all the keys in the dictionary. The order should be
ascending, and the keys should be separated by “, ” (a comma followed by a space). The
PAIRS operations outputs a list of all the (key, value) pairs in the dictionary, again sorted by
key and separated by a comma and a space. For this assignment, the values are the
counts of occurrences of the keys. SIZE should return the number of valid entries in the
dictionary. (It should not count any deleted elements, and it should count 1 for each key,
even if it was inserted multiple times.)

INSERT-FILE should take one argument, a path including a valid file name, and it should
read the file and process it by finding all the words in it and inserting them into the
dictionary. For purposes of this assignment, consider a word to be a string of alphanumeric
characters (letters and digits). You do not have to handle Unicode, special characters, etc.
Any non-alphabetic character in the file can be treated as a space or word separator. An
actual string such as “<i>Don't bug me.<i>” would turn into 6 instances of words: “i”, “don”,
“t”, “bug”, “me”,”i”. Notice again that each word is converted to lower-case.

The command INSERT-TEXT provides a way to “mass-insert” some textual material without
having to have a file. It should cause successive lines in the command text area to be
processed (the same way as INSERT-FILE does) until it reaches a line that starts with
“END-TEXT”. Any semicolons within this block of text should be ignored and thus a
semicolon does not signify a comment when it occurs between an INSERT-TEXT command
and and “END-TEXT” command.

c. The STATS command. It should cause your data structure to report its useful statistics.
There will be three kinds of statistics:
 – dictionary statistics (which should be independent of the implementation),
 – cost information (where the numbers do tend to depend on the implementation) and
 – implementation statistics where the numbers themselves only have meaning for the
particular data structure.

The dictionary statistics are the counts of the basic dictionary operations performed. The
cost statistics include average cost per INSERT, etc. in terms of “elementary operations”
that you define precisely1. The implementation statistics are those specific to the
implementation. For a hash table, the current load factor is one such statistic. For a binary
search tree, the average node depth and greatest node depth are of interest.

d. Display of your data structure within the applet.

e. Put your applet on the web.

Phase B Functionality: You'll implement the following functionality for an advanced
version of your player:

f. Support for multiple dictionaries in the form of a list of dictionaries. (We'll call this a
“RADDI”.)

g. Support for a command CREATE that takes as a first argument a name that controls the
type of implementation. For example, CREATE AVL sets up an empty AVL tree in the next
available position in the list of dictionaries. Additional arguments may be used, if your
implementation can benefit from them. For example, CREATE HASHTABLE 15
QUADRATIC would be used to specify a new empty hash table with capacity 15, and using
quadratic probing for resolving collisions. A default hashing function might be used here.
(However, you are welcome to offer various alternative hash functions and have an
argument to the CREATE command for specifying what hash function to use.) Note: you as
a designer specify the number, names, and meanings of the arguments to your CREATE
command so that you can offer options when instantiating your dictionaries.

h. Support for a command REMOVE_DICT_AT k. This command takes as its argument an
integer greater than or equal to 0 and less than the number of dictionary instances in your
RADDI. It should delete the one in position k. If k is not valid, then it should report an error.

i. In the Phase B applet, all the Phase A commands (except STATS) should not only work,
but they should be invoked on ALL of the data structures in your list of dictionaries. For
example, INSERT “apple” should cause the word “apple” to be inserted in all of the
dictionaries. However, the STATS command will have a slightly different interpretation
(explained below).

Recommended Development Sequence: The following steps are recommended.
1. Choose your partner(s).
2. Select your data structures for Phase A, coordinating with each other.
3. Start coming up with a good “IDIA” (Individual Dictionary Implementation Applet). That is,
individually implement your chosen data structures in separate applets, getting the
commands and the visualizations to work in the Visual Data Structure Applet Framework.
Your experience from Project 1, Phase A should come in handy for this.
4. Set up your applet to run the basic demo sequence (to be announced).
5. Post your applet on the web.

1 Expect further discussion about this on GoPost or in class.

6. Turn in your code and link file for Phase A.

7. “Get RADDI for fun.” Work with your partner on a new applet that features a new
“RADDI” visible data structure, which is a “Redundant Array of Different Dictionary
Implementations”. Actually, it's just a list of dictionary implementations. Set it up so that it
will display each dictionary in the list by calling each dictionary's own renderDS method. But
have that method take a starting x coordinate, so that the dictionaries can be drawn side-
by-side, one after another. Optional: have the applet draw a filled, colored rectangle
behind each data structure, using distinct colors, so that its easier to navigate within the
scrolled panel to one data structure or another.
8. Each partner now individually take the new RADDI applet and adapt your dictionary
implementation to fit into the new structure. If you and your partner(s) have used a similar
interface, abstract class, or set of calling conventions for your separate dictionary
implementations, then it should be relatively easy to allow your structure to be instantiated
any number of times in the new applet. Your experience with Phase B of Project 1 should
come in handy here, where you adapted your queue from Phase A to fit into a list of queues
in Phase B. The new twist in the current project is that the dictionaries can be of two or
more implementation types. However, it also should also work to have several dictionaries
of the same type. Having five identical AVL trees might not be very interesting, but five
hash tables, each with a different capacity and/or hash function and/or collision-resolution
policy could be quite interesting.

9. Adapt the processing so that all the commands except CREATE, REMOVE_DICT_AT
and STATS are applied to all the data structures in the list. The results should generally be
reported as follows:
If all dictionaries report the same result (call it R), the RADDI structure should report “All
data structures respond: “ followed by R. If the results differ, then RADDI should report
them separately, as in the following responses to “INSERT apple”:
 AVL Tree in position 0 reports “OK”
 Hash Table in position 1 reports: “Error: could not insert 'apple' because table is full.”
 Hash Table in position 2 reports: “OK”

10. The STATS command should cause each data structure to report its statistics, and the
answers should be concatenated in a readable fashion. Each structure should report the
following information: (a) what kind of structure it is, possibly including the values of
parameters specified when it was created such as hashtable capacity; (b) the counts of the
basic dictionary operations performed, (c) the average cost of each insert, find, and delete
operation so far in the current session (i.e., since the most recent RESET operation or, if
none, since the program was started), (d) total cost of all operations so far for this data
structure, and (e) the interesting statistics for that structure, such as load factor, average
node depth, etc.

11. Implement a new command MONITOR that (a) creates a new window (JFrame)
containing a panel (you'll typically subclass JPanel) and (b) draws a running graph of the
performance of each of the dictionary instances in the RADDI. The graph should have on
its horizontal axis the number of basic operations. Basic operations are insertions, finds,
and deletes. If the monitor is open, then the display should be updated automatically as
operations happen (somewhat like the history window). Make it easy for a person watching

your monitor window to tell which curves go with which dictionaries, and make it easy to
compare performance.

12. Get your applet to correctly run the canonical demo for Phase B.
13. Jar-up your applet and put it on the web.
14. Turn in your advanced applet code and link file.

 Further Instructions and Information: Updates and clarifications to this project will be
posted in the Catalyst GoPost discussion topic “Project 2” and/or in the “clarifications” box on
the Projects webpage.

