1.b.

Average
Prim’s MST O(|E|log|V])
Kruskal’s MST O(|E|log|V])
Dijkstra’s O(|V[log|V]
+|E|log|V])
or|V|?
Topological sort O(|El +|V])
2.
a.
4 3
a 9 C
11
10 1 12 4
7 ‘ | 8
o) @ f
6
5 7 2 3
=]
In i
9 6
b. We can show the process in Prim’s via a table. Start with an empty table.
Vertex | Known | Distance | Path
A F
B F
C F
D F
E F
F F
G F
H F
| F

Say we start at vertex A; explore ‘A’: mark as ‘Known’, update distance of any adjacent edges that are 1)
not known, and 2) have edge weight < current distance value in table — mark the ‘Path’ of those updated

nodes to be the node we are exploring.

Vertex | Known Distance | Path
A T 0 -
B F 4 A
C F
D F 10 a
E F 1 A
F F
G F
H F
I F

Explore ‘E’

Vertex | Known Distance | Path
A T 0 -
B F 4 A
C F 12 E
D F 7 E
E T 1 A
F F 8 E
G F 5 E
H F 7 E
I F 2 E

Explore ‘I’

Vertex | Known Distance | Path
A T 0 -
B F 4 A
C F 12 E
D F 7 E
E T 1 A
F F 3 I
G F 5 E
H F 6 I
I T 2 E

Explore ‘F

’ Vertex ’ Known

Distance ’ Path ’

A T 0 -
B F 4 A
C F 4 F
D F 7 E
E T 1 A
F T 3 I
G F 5 E
H F 6 I
I T 2 E

Explore ‘B’

Vertex | Known Distance | Path
A T 0 -
B T 4 A
C F 3 B
D F 7 E
E T 1 A
F T 3 I
G F 5 E
H F 6 I
I T 2 E

Explore ‘C’

Vertex | Known Distance | Path
A T 0 -
B T 4 A
C T 3 B
D F 7 E
E T 1 A
F T 3 I
G F 5 E
H F 6 I
I T 2 E

Explore ‘G’

Vertex | Known Distance | Path
A T 0 -
B T 4 A
C T 3 B
D F 6 G

E T 1 A
F T 3 I
G T 5 E
H F 6 I
I T 2 E

Explore ‘D’

Vertex | Known Distance | Path
A T 0 -
B T 4 A
C T 3 B
D T 6 G
E T 1 A
F T 3 I
G T 5 E
H F 6 I
I T 2 E

Explore ‘H’

Vertex | Known Distance | Path
A T 0 -
B T 4 A
C T 3 B
D T 6 G
E T 1 A
F T 3 I
G T 5 E
H T 6 I
I T 2 E

The MST is then: AB:4, AE:1,BC:3, DG:6, EG:5, El:2, FI:3, HI:6
Total cost: 30

c.
Kruskal’s: Order the list of edges of the graph; step through and accept an edge if it’s two vertices are
not connected (we’d keep track of it using the union/find data structure).

Edge | Cost Accepted

AE 1 Yes

El 2 Yes

BC 3 Yes

FI 3 Yes
AB 4 Yes
CF 4 No
GE 5 Yes
HI 6 Yes
DG 6 Yes
DE 7

EH 7

EF 8

GH 9

AD 10

BE 11

CE 12

The MST is then: AB:4, AE:1, BC:3, DG:6, El:2, FI:3, GE:5, HI:6
Cost: 30

This turns out to be the same MST as we got with Prim’s, but we can get a different one by swapping AB
with CF; had our ordering of the edges for the above table been different, we may have ended up with
this one instead.

d. We can use a table similar that used for Prim’s to find the shortest distance from A to every other

vertex.

Vertex | Known Distance | Path
A F
B F
C F
D F
E F
F F
G F
H F
I F

Explore ‘A’; very similar to Prim’s, but here the ‘Distance’ is not merely the edge weight, but is the edge
weight plus the current path length.

Vertex | Known Distance | Path
A T 0 -
B F 4 A
C F
D F 10 A
E F 1 A

F F
G F
H F
I F
Explore ‘E’
Vertex | Known Distance | Path
A T 0 -
B F 4 A
C F 13 E
D F 8 E
E T 1 A
F F 9 E
G F 6 E
H F 8 E
I F 3 E
Explore ‘I’
Vertex | Known Distance | Path
A T 0 -
B F 4 A
C F 13 E
D F 8 E
E T 1 A
F F 6 I
G F 6 E
H F 8 E
I T 3 E
Explore ‘B’
Vertex | Known Distance | Path
A T 0 -
B T 4 A
C F 7 B
D F 8 E
E T 1 A
F F 6 I
G F 6 E
H F 8 E
I T 3 E

Explore ‘F

Vertex | Known Distance | Path
A T 0 -
B T 4 A
C F 7 B
D F 8 E
E T 1 A
F T 6 I
G F 6 E
H F 8 E
I T 3 E

Explore ‘G’

Vertex | Known Distance | Path
A T 0 -
B T 4 A
C F 7 B
D F 8 E
E T 1 A
F T 6 I
G T 6 E
H F 8 E
I T 3 E

Explore ‘C’

Vertex | Known Distance | Path
A T 0 -
B T 4 A
C T 7 B
D F 8 E
E T 1 A
F T 6 I
G T 6 E
H F 8 E
I T 3 E

Explore ‘D’

Vertex | Known Distance | Path
A T 0 -

B T 4 A
C T 7 B
D T 8 E
E T 1 A
F T 6 I
G T 6 E
H F 8 E
I T 3 E

Explore ‘H’

Vertex Known Distance | Path

A T 0 -
B T 4 A
C T 7 B
D T 8 E
E T 1 A
F T 6 I
G T 6 E
H T 8 E
I T 3 E

Now we’re done.

We can find the shortest path A to an arbitrary vertex X by starting at X and tracing it’s path backward
using the ‘Path’ column of the table.

For instance, to find the path from A to F, start at F, look up its path value I; now check I’s, which is E;
now check E’s, which is A. So the path is AEIF.

