Section Worksheet \#4 Solutions
1.

1c

1b

No; ordering property violated

e. It would have a gap in the array; to be complete the array should be populated from index 1 to n , and nowhere else (except 0 , which may store the size or something similar).
2. a)

2. b)

2. c)

3. a)

b) Adding a node as either a left child of node 15 or node 3 would cause a left-left imbalance
4. a) Each node can have at most M children, and must have a minimum of $M / 2$ children, and each leaf can have at most L data items, and at least $\mathrm{L} / 2$ data items. (rounding-up)
So, a tree with $\mathrm{M}=32$ and $\mathrm{L}=16$ must have $16-32$ children at each internal node, and must have 8-16 items at each leaf. (excepting the first 7 insertions)
4. b)

4. c)

18
20
24

5. a)

0	14
1	
2	
3	$24=>17=>10$
4	4
5	12
6	13

5. b)

0	14
1	13
2	24
3	10
4	17
5	4
6	12

5. c) $14,10,17,4,12,13,24$

0	14
1	13
2	
3	10
4	17
5	4
6	12

We can never place the 24 because the index loops between $4,0,5,5,0,4,3$ and never hits 2.

