Section Worksheet Solutions; Week 3: Heaps & AVL Trees
1.
[image: image1]
2. It would have a gap in the array; to be complete the array should be populated from index 1 to n, and nowhere else (except 0, which may store the size or something similar). As someone pointed out in section, in an actual program there couldn’t really be a ‘gap’, just some potentially garbage value in an array cell, which may or may not be valid.

[image: image2]
3.

[image: image3]
4.

a.
While proving the AVL tree height bound in lecture we constructed a minimum size AVL tree of height h by creating a new root, and making one of its children a minimum AVL tree of height h-1, and the other a minimum AVL tree of h-2. So to get a minimum AVL tree of height 4, we need to build up minimum AVL trees of heights 0-3 first. The image below shows each of these, and finally a minimum AVL tree of height 4. Values are left out here, but any valid BST values could be filled in. Note that there are many different possible orderings of branches (left versus right); the ones shown below are one way to do it.
[image: image4.png]
b.
[image: image5.png]
5.

a.

[image: image6.png]
b. There are several keys we could insert to get a case 1 rotation; inserting ‘1’, for instance, will cause a height imbalance to be detected at the root.
c.

We can traverse the tree in O(n) time and insert each element into an initially empty AVL tree; this will take O(nlogn) time overall. To get O(n) ‘best-case’ performance we can do something that’s a bit of a hack: try to verify that the BST is a valid AVL tree, which we can do in O(n) time; if it is, return it as it is. Otherwise, create a new AVL tree as described. It’s questionable as to whether this is really a ‘best-case’ result, as we don’t actually do any conversion, only verification.

6.

a. Some reasons:

1) Binary heaps have O(1) expected time for inserts
2) We’ll likely get better caching performance from the binary heap, as it’s stored as an array
3) AVL tree pointers take up additional memory

b. If we want to perform other operations, like findMin, etc., an AVL tree would be useful. An AVL tree will use extra the memory it needs, whereas a (potentially large) portion of the array for a binary heap may go unused; depending on the circumstances, it’s possible that the binary heap could use more memory.
No; ordering property violated

Yes

No; ordering property violated

Yes

1d

9

6

14

7

8

2

1c

1b

1a

41

37

6

5

12

4

3

12

7

9

6

8

5

14

9

15

13

8

12

7

2c

3

4

8

7

2

5

1

2b

8

7

3

5

2

2a

3

8

7

2

5

1

3b

10

7

9

5

8

6

4

3

9

10

3a

8

7

6

5

4

3

2

1

