
CSE332 Week 2 Section Worksheet Solutions 
 
1.  Prove f(n) is O(g(n)) where 
a.  

f(n)=7n2+3n 
 g(n)=n4 
Solution: 
 According to the definition of O( ), we need to find positive real #’s n0 & c so that 
  f(n)<=c*g(n) for all n>=n0 
 Pick n0=1 & c=10; f & cg are equal at n=1, and g rises more quickly than f after that. 
 
b. 
 f(n)=n+2nlogn 
 g(n)=nlogn 
Solution: 
 n0=2 & c=10 
 **Why will n0=1 & c=10 not work? Consider 

f(1)=1+2*1*log1=1+2*1*0=1 
g(1)=1*log1=1*0=0 
 so f(1) > 10*g(1) 
**The values we choose do depend on the base of the log; here we’ll assume base 2 

 
c. 
 f(n)=1000 
 g(n)=3n3 
Solution: 
 n0=1 & c=400 works 
 
d. 
 f(n)=7n 
 g(n)=n/10 
Solution: 
 n0=1 & c=100 works 
 
2.  True or false, & explain 
a.  f(n) is Θ(g(n)) implies g(n) is Θ(f(n)) 
Solution: 
 True:  Intuitively, Θ is an equals, and so is symmetric. 
 More specifically, we know 
  f is O(g) & f is Ω(g) 
 so 
  There exist positive # c, c’, n0 & n0’ such that 
   f(n)<=cg(n) for all n>=n0 
  and 
   f(n)>=c’g(n) for all n>=n0’ 
 so 



   g(n)<=f(n)/c’ for all n>=n0’ 
  and 
   g(n)>=f(n)/c for all n>=n0 
 so g is O(f) and g is Ω(f) 

so g is Θ(f) 
 
b.  f(n) is Θ(g(n)) implies f(n) is O(g(n)) 
Solution: 
 True: Based on the definition of Θ, f(n) is O(g(n)) 
 
c.  f(n) is Ω(g(n)) implies f(n) is O(g(n)) 
Solution: 
 False: Counter example: f(n)=n2 & g(n)=n; f(n) is Ω(g(n)), but f(n) is NOT O(g(n)) 
 
3.  Find functions f(n) and g(n) such that f(n) is O(g(n)) and the constant c for the definition of 
O( ) must be >1.  That is, find f & g such that c must be greater than 1, as there is no sufficient n0 
when c=1. 
Solution: 
 Consider 
  f(n)=n+1 
  g(n)=n 
 we know f(n) is O(g(n)); both run in linear time 

Yet f(n)>g(n) for all values of n; no n0 we pick will help with this if we set c=1. 
Instead, we need to pick c to be something else; say, 2. 
 n+1 <= 2n for n>=1 

 
4.  Write the O( ) run-time of the functions with the following recurrence relations 
a.  T(n)=3+T(n-1), where T(0)=1 
Solution: 
 T(n)=3+3+T(n-2)=3+3+3+T(n-3)=…=3k+T(0)=3k+1, where k=n,  
 so O(n) time. 
 
b.  T(n)=3+T(n/2) , where T(1)=1 
Solution: 
 T(n)=3+3+T(n/4)=3+3+3+T(n/8)=…=3k+T(n/2k) 

we want n/2k=1 (since we know what T(1) is), so k=log2n 
 so T(n)=3logn+1, so O(logn) time. 
 
c.  T(n)=3+T(n-1)+T(n-1) , where T(0)=1 
Solution: 
 
We can re-write T(n) as T(n) = 3+2 T(n-1) 
Then to expand T(n) 
T(n) 
= 3 + 2 (3 + 2 T(n-2)) 
= 3 + 2( 3 + 2 (3 + 2 T (n-3) ) ) 



= 3 + 2 ( 3 + 2 ( 3 + 2 (3 + 2 T (n-4)))) 
=
  

! 

3 " 2
0

+ 3 " 2
1

+ 3 " 2
2

+L+ 3 " 2
k#1

+ 2
k
T(0) where k is the number of iterations 

= 

! 

3 " 2i

i= 0

k#1

$ +2
k " 5 

Because 

! 

m
i

i= 0

j

" = m
j+1, we can replace the summation with 

=

! 

3 " 2
k

+ 2
k
" 5 

And in this case, since we know that the number of iterations that occur is just n, k=n, and so 
= 

! 

3 " 2
n

+ 5 " 2
n  

and we see that have T(n) = 

! 

8 " 2
n , and thus T(n) is in O(2n ). 

 
Basically, since we can tell the # of calls to T( ) is doubling every time we expand it further, it 
runs in O(2n) time. 
 
5.  What’s the O( ) run-time of this code fragment in terms of n: 
 int x=0; 
 for(int i=n;i>=0;i--) 
  if((i%3)==0) break; 
  else x+=i; 
Solution: 

At a glance we see a loop and it looks like it should be O(n); it looks like we go through  
the loop n times. 

 However, that ‘break’ makes things a bit weirder.  Consider how the loop will work for  
 any real data; we start at some n, count backwards until the value is a multiple of 3, at  

which point we break. 
So the loop’s code will run at most 3 times (not a function of n); so the whole thing is  
O(1). 

 **Recall that ‘%’ is the remainder operator; i%3 divides i by 3 and returns the remainder  
(which will be 0, 1 or 2). 

 


