
CSE332 Week 2 Section Worksheet Solutions

1. Prove f(n) is O(g(n)) where
a.

f(n)=7n2+3n
 g(n)=n4
Solution:
 According to the definition of O(), we need to find positive real #’s n0 & c so that
 f(n)<=c*g(n) for all n>=n0
 Pick n0=1 & c=10; f & cg are equal at n=1, and g rises more quickly than f after that.

b.
 f(n)=n+2nlogn
 g(n)=nlogn
Solution:
 n0=2 & c=10
 **Why will n0=1 & c=10 not work? Consider

f(1)=1+2*1*log1=1+2*1*0=1
g(1)=1*log1=1*0=0
 so f(1) > 10*g(1)
**The values we choose do depend on the base of the log; here we’ll assume base 2

c.
 f(n)=1000
 g(n)=3n3
Solution:
 n0=1 & c=400 works

d.
 f(n)=7n
 g(n)=n/10
Solution:
 n0=1 & c=100 works

2. True or false, & explain
a. f(n) is Θ(g(n)) implies g(n) is Θ(f(n))
Solution:
 True: Intuitively, Θ is an equals, and so is symmetric.
 More specifically, we know
 f is O(g) & f is Ω(g)
 so
 There exist positive # c, c’, n0 & n0’ such that
 f(n)<=cg(n) for all n>=n0
 and
 f(n)>=c’g(n) for all n>=n0’
 so

 g(n)<=f(n)/c’ for all n>=n0’
 and
 g(n)>=f(n)/c for all n>=n0
 so g is O(f) and g is Ω(f)

so g is Θ(f)

b. f(n) is Θ(g(n)) implies f(n) is O(g(n))
Solution:
 True: Based on the definition of Θ, f(n) is O(g(n))

c. f(n) is Ω(g(n)) implies f(n) is O(g(n))
Solution:
 False: Counter example: f(n)=n2 & g(n)=n; f(n) is Ω(g(n)), but f(n) is NOT O(g(n))

3. Find functions f(n) and g(n) such that f(n) is O(g(n)) and the constant c for the definition of
O() must be >1. That is, find f & g such that c must be greater than 1, as there is no sufficient n0
when c=1.
Solution:
 Consider
 f(n)=n+1
 g(n)=n
 we know f(n) is O(g(n)); both run in linear time

Yet f(n)>g(n) for all values of n; no n0 we pick will help with this if we set c=1.
Instead, we need to pick c to be something else; say, 2.
 n+1 <= 2n for n>=1

4. Write the O() run-time of the functions with the following recurrence relations
a. T(n)=3+T(n-1), where T(0)=1
Solution:
 T(n)=3+3+T(n-2)=3+3+3+T(n-3)=…=3k+T(0)=3k+1, where k=n,
 so O(n) time.

b. T(n)=3+T(n/2) , where T(1)=1
Solution:
 T(n)=3+3+T(n/4)=3+3+3+T(n/8)=…=3k+T(n/2k)

we want n/2k=1 (since we know what T(1) is), so k=log2n
 so T(n)=3logn+1, so O(logn) time.

c. T(n)=3+T(n-1)+T(n-1) , where T(0)=1
Solution:

We can re-write T(n) as T(n) = 3+2 T(n-1)
Then to expand T(n)
T(n)
= 3 + 2 (3 + 2 T(n-2))
= 3 + 2(3 + 2 (3 + 2 T (n-3)))

= 3 + 2 (3 + 2 (3 + 2 (3 + 2 T (n-4))))
=

!

3 " 2
0

+ 3 " 2
1

+ 3 " 2
2

+L+ 3 " 2
k#1

+ 2
k
T(0) where k is the number of iterations

=

!

3 " 2i

i= 0

k#1

$ +2
k " 5

Because

!

m
i

i= 0

j

" = m
j+1, we can replace the summation with

=

!

3 " 2
k

+ 2
k
" 5

And in this case, since we know that the number of iterations that occur is just n, k=n, and so
=

!

3 " 2
n

+ 5 " 2
n

and we see that have T(n) =

!

8 " 2
n , and thus T(n) is in O(2n).

Basically, since we can tell the # of calls to T() is doubling every time we expand it further, it
runs in O(2n) time.

5. What’s the O() run-time of this code fragment in terms of n:
 int x=0;
 for(int i=n;i>=0;i--)
 if((i%3)==0) break;
 else x+=i;
Solution:

At a glance we see a loop and it looks like it should be O(n); it looks like we go through
the loop n times.

 However, that ‘break’ makes things a bit weirder. Consider how the loop will work for
 any real data; we start at some n, count backwards until the value is a multiple of 3, at

which point we break.
So the loop’s code will run at most 3 times (not a function of n); so the whole thing is
O(1).

 **Recall that ‘%’ is the remainder operator; i%3 divides i by 3 and returns the remainder
(which will be 0, 1 or 2).

