CSE332 Week 2 Section Worksheet Solutions

1. Prove $f(n)$ is $O(g(n))$ where
a.

$$
\begin{aligned}
& \mathrm{f}(\mathrm{n})=7 \mathrm{n}^{2}+3 \mathrm{n} \\
& \mathrm{~g}(\mathrm{n})=\mathrm{n}^{4}
\end{aligned}
$$

Solution:
According to the definition of O() , we need to find positive real \#'s $\mathrm{n}_{0} \& \mathrm{c}$ so that $\mathrm{f}(\mathrm{n})<=\mathrm{c}^{*} \mathrm{~g}(\mathrm{n})$ for all $\mathrm{n}>=\mathrm{n}_{0}$
Pick $\mathrm{n}_{0}=1 \& \mathrm{c}=10 ; \mathrm{f} \& \mathrm{cg}$ are equal at $\mathrm{n}=1$, and g rises more quickly than f after that.
b.

$$
\begin{aligned}
& \mathrm{f}(\mathrm{n})=\mathrm{n}+2 \mathrm{n} \operatorname{logn} \\
& \mathrm{~g}(\mathrm{n})=\mathrm{n} \log \mathrm{n}
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& \mathrm{n}_{0}=2 \& \mathrm{c}=10 \\
& * * \text { Why will } \mathrm{n}_{0}=1 \& \mathrm{c}=10 \text { not work? Consider }
\end{aligned}
$$

$$
f(1)=1+2 * 1 * \log 1=1+2 * 1 * 0=1
$$

$$
g(1)=1 * \log 1=1 * 0=0
$$

$$
\text { so } f(1)>10 * g(1)
$$

**The values we choose do depend on the base of the log; here we'll assume base 2
c.

$$
\begin{aligned}
& f(n)=1000 \\
& g(n)=3 n^{3}
\end{aligned}
$$

Solution:

$$
\mathrm{n}_{0}=1 \& \mathrm{c}=400 \text { works }
$$

d.

$$
\begin{aligned}
& \mathrm{f}(\mathrm{n})=7 \mathrm{n} \\
& \mathrm{~g}(\mathrm{n})=\mathrm{n} / 10
\end{aligned}
$$

Solution:
$\mathrm{n}_{0}=1 \& \mathrm{c}=100$ works
2. True or false, \& explain
a. $f(n)$ is $\Theta(g(n))$ implies $g(n)$ is $\Theta(f(n))$

Solution:
True: Intuitively, Θ is an equals, and so is symmetric.
More specifically, we know
f is $\mathrm{O}(\mathrm{g}) \& \mathrm{f}$ is $\Omega(\mathrm{g})$
so
There exist positive \# c, $\mathrm{c}^{\prime}, \mathrm{n}_{0} \& \mathrm{n}_{0}{ }^{\prime}$ such that

$$
\mathrm{f}(\mathrm{n})<=\mathrm{cg}(\mathrm{n}) \text { for all } \mathrm{n}>=\mathrm{n}_{0}
$$

and

$$
\mathrm{f}(\mathrm{n})>=\mathrm{c}^{\prime} \mathrm{g}(\mathrm{n}) \text { for all } \mathrm{n}>=\mathrm{n}_{0} \text { ' }
$$

so

$$
\mathrm{g}(\mathrm{n})<=\mathrm{f}(\mathrm{n}) / \mathrm{c}^{\prime} \text { for all } \mathrm{n}>=\mathrm{n}_{0} \text {, }
$$

and

$$
\mathrm{g}(\mathrm{n})>=\mathrm{f}(\mathrm{n}) / \mathrm{c} \text { for all } \mathrm{n}>=\mathrm{n}_{0}
$$

so g is $O(f)$ and g is $\Omega(f)$
so g is $\Theta(f)$
b. $f(n)$ is $\Theta(g(n))$ implies $f(n)$ is $O(g(n))$

Solution:
True: Based on the definition of $\Theta, f(n)$ is $O(g(n))$
c. $\mathrm{f}(\mathrm{n})$ is $\Omega(\mathrm{g}(\mathrm{n}))$ implies $\mathrm{f}(\mathrm{n})$ is $\mathrm{O}(\mathrm{g}(\mathrm{n}))$

Solution:
False: Counter example: $\mathrm{f}(\mathrm{n})=\mathrm{n}^{2} \& \mathrm{~g}(\mathrm{n})=\mathrm{n} ; \mathrm{f}(\mathrm{n})$ is $\Omega(\mathrm{g}(\mathrm{n}))$, but $\mathrm{f}(\mathrm{n})$ is NOT $\mathrm{O}(\mathrm{g}(\mathrm{n}))$
3. Find functions $f(n)$ and $g(n)$ such that $f(n)$ is $O(g(n))$ and the constant c for the definition of O() must be >1. That is, find $\mathrm{f} \& \mathrm{~g}$ such that c must be greater than 1 , as there is no sufficient n_{0} when $\mathrm{c}=1$.
Solution:
Consider
$\mathrm{f}(\mathrm{n})=\mathrm{n}+1$
$g(n)=n$
we know $f(n)$ is $O(g(n))$; both run in linear time
Yet $\mathrm{f}(\mathrm{n})>\mathrm{g}(\mathrm{n})$ for all values of n ; no n_{0} we pick will help with this if we set $\mathrm{c}=1$.
Instead, we need to pick c to be something else; say, 2.
$\mathrm{n}+1<=2 \mathrm{n}$ for $\mathrm{n}>=1$
4. Write the $O($) run-time of the functions with the following recurrence relations
a. $T(n)=3+T(n-1)$, where $T(0)=1$

Solution:
$\mathrm{T}(\mathrm{n})=3+3+\mathrm{T}(\mathrm{n}-2)=3+3+3+\mathrm{T}(\mathrm{n}-3)=\ldots=3 \mathrm{k}+\mathrm{T}(0)=3 \mathrm{k}+1$, where $\mathrm{k}=\mathrm{n}$, so $\mathrm{O}(\mathrm{n})$ time.
b. $T(n)=3+T(n / 2)$, where $T(1)=1$

Solution:

$$
\mathrm{T}(\mathrm{n})=3+3+\mathrm{T}(\mathrm{n} / 4)=3+3+3+\mathrm{T}(\mathrm{n} / 8)=\ldots=3 \mathrm{k}+\mathrm{T}\left(\mathrm{n} / 2^{\mathrm{k}}\right)
$$

we want $\mathrm{n} / 2^{\mathrm{k}}=1$ (since we know what $\mathrm{T}(1)$ is), so $\mathrm{k}=\log _{2} \mathrm{n}$ so $T(n)=3 \log n+1$, so $O(\log n)$ time .
c. $T(n)=3+T(n-1)+T(n-1)$, where $T(0)=1$

Solution:
We can re-write $T(n)$ as $T(n)=3+2 T(n-1)$
Then to expand $T(n)$
T(n)
$=3+2(3+2 T(n-2))$
$=3+2(3+2(3+2 T(n-3)))$
$=3+2(3+2(3+2(3+2 T(n-4))))$
$=3 \cdot 2^{0}+3 \cdot 2^{1}+3 \cdot 2^{2}+\cdots+3 \cdot 2^{k-1}+2^{k} T(0)$ where k is the number of iterations
$=\sum_{i=0}^{k-1} 3 \cdot 2^{i}+2^{k} \cdot 5$
Because $\sum_{i=0}^{j} m^{i}=m^{j+1}$, we can replace the summation with
$=3 \cdot 2^{k}+2^{k} \cdot 5$
And in this case, since we know that the number of iterations that occur is just $\mathrm{n}, \mathrm{k}=\mathrm{n}$, and so $=3 \cdot 2^{n}+5 \cdot 2^{n}$
and we see that have $\mathrm{T}(\mathrm{n})=8 \cdot 2^{n}$, and thus $\mathrm{T}(\mathrm{n})$ is in $\mathrm{O}\left(2^{\mathrm{n}}\right)$.
Basically, since we can tell the \# of calls to $\mathrm{T}($) is doubling every time we expand it further, it runs in $\mathrm{O}\left(2^{\mathrm{n}}\right)$ time.
5. What's the O() run-time of this code fragment in terms of n :

$$
\text { int } x=0 ;
$$

$$
\text { for (int } i=n ; i>=0 ; i--)
$$

$\operatorname{if}((\mathrm{i} \% 3)==0)$ break;
else $\mathrm{x}+=\mathrm{i}$;
Solution:
At a glance we see a loop and it looks like it should be $O(n)$; it looks like we go through the loop n times.
However, that 'break' makes things a bit weirder. Consider how the loop will work for any real data; we start at some n, count backwards until the value is a multiple of 3 , at which point we break.
So the loop's code will run at most 3 times (not a function of n); so the whole thing is O(1).
**Recall that ' $\%$ ' is the remainder operator; $\mathrm{i} \% 3$ divides i by 3 and returns the remainder (which will be 0,1 or 2).

