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Terminology

 Abstract Data Type (ADT)
 Mathematical description of a “thing” with set of operations 

on that “thing”; doesn‟t specify the details of how it‟s done
 Ex, Stack: You push stuff and you pop stuff
 Could use an array, could use a linked list

 Algorithm
 A high level, language-independent description of a step-

by-step process
 Ex: Binary search

 Data structure
 A specific family of algorithms & data for implementing an 

ADT
 Ex: Linked list stack

 Implementation of a data structure
 A specific implementation in a specific language



Big Oh’s Family
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 Big Oh: Upper bound: O( f(n) ) is the set of all functions 

asymptotically less than or equal to f(n)

 g(n) is in O( f(n) ) if there exist  constants c and n0 such that 

g(n)  c f(n) for all n  n0

 Big Omega: Lower bound: ( f(n) ) is the set of all 

functions asymptotically greater than or equal to f(n)

 g(n) is in ( f(n) ) if there exist  constants c and n0 such that 

g(n)  c f(n) for all n  n0

 Big Theta: Tight bound: ( f(n) ) is the set of all functions 

asymptotically equal to f(n)

 Intersection of O( f(n) ) and ( f(n) )  (use different c values)



Common recurrence relations
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T(n) = O(1) + T(n-1) linear

T(n) = O(1) + 2T(n/2) linear

T(n) = O(1) + T(n/2) logarithmic

T(n) = O(1) + 2T(n-1) exponential

T(n) = O(n) + T(n-1) quadratic

T(n) = O(n) + T(n/2) linear

T(n) = O(n) + 2T(n/2) O(n log n)

 Solving to a closed form (summary):
 Ex: T(n)=2+T(n-1), T(1)=5

 Expand: T(n)=2+T(n-1)=2+2+T(n-2)=…=2+2+2+…+2+5

 Determine # of times recurrence was applied to get to the base 
case; call it k

 T(n)=2(k-1)+5=2k+3

 Determine k in terms of n; here k=n; plug into equation

 T(n)=2n+3



Binary Heap: Priority Queue DS
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 Structure property : A complete binary tree

 Heap ordering property: For every (non-root) node the parent node‟s 

value is less than the node‟s value

 Array representation; index starting at 1

 Poor performance for general „find‟
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Operation Description Run-time

Insert Place in next available

spot; percUp

O(logn) worst; O(1) 

expected

DeleteMin Remember root value;

place last node in root; 

percDown

O(logn)

BuildHeap Treat array as heap; 

percDown elements 

index <= size/2

O(n)



Binary Search Tree:  Dictionary ADT
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 Structure property : Binary tree; values in left subtree < this 

node‟s value; values in right subtree > this node‟s value

 Height O(logn) if balanced; O(n) if not

 No guarantees on balance

Operation Description Run-time

Find Check my value against 

node‟s: go left or right

O(n) worst

Insert Traverse like in find; 

create new node there

O(n) worst

Delete Traverse like in find; 3 

cases: has no children, 

1 child or 2 children

O(n) worst
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AVL Tree:  Dictionary ADT
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 Structure property : BST

 Balance property: |left.height-right.height|<=1

 Balance guaranteed; O(logn) height

 Perform O(1) rotations to fix balance; at most one required per insert

 4 rotation cases; depend on

 At what node the imbalance is detected

 At which of 4 subtrees the insertion was performed, relative to the detecting 

node

Operation Description Run-time

Find BST find O(logn)

Insert BST insert, then recurse

back up, check for 

imbalance & perform 

necessary rotations

O(logn)
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B-Tree:  Dictionary ADT
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 2 constants: M & L

 Internal nodes (except root) have between M/2 and M children (inclusive)

 Leaf nodes have between L/2 and L data items (inclusive)

 Root has between 2 & M children (inclusive); or between 0 & L data items if a leaf

 Base M & L on disk block size

 All leaves on same level; all data at leaves

 If in child branch, value is >= prev key in parent, < next key

 Goal: Shallow tree to reduce disk accesses

 Height: O(logM n)

Oper-

ation

Description Run-time

Find Binary Search to find which child to 

take on each node; Binary Search in 

leaf to find data item

O(log2 M logM n)

Insert Find leaf; insert in sorted order; if 

overflow, split leaf; if parent 

overflows, split parent; may need to 

recursively split all the way to root

O(L + M logM n) worst 

(split root)
O(L + log2 M logM n) 

expected

Delete Find leaf; remove value, shift others 

as appropriate; if underflow, adopt 

and/or merge; may need to merge 

all the way to the root

O(L + M logM n) worst 

(replace root)
O(L + log2 M logM n) 

expected
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Hash tables (in general): Dictionary ADT 

(pretty much)
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 Store everything in an array

 To do this, provide a mapping from key to index
 Ex: “Jean Valjean” → 24601

 Keyspace >> tablesize; need to deal with „collisions‟; we consider 2 
varieties:
 Separate Chaining:  Linked list  at each index

 Open Addressing:  Store all in table; give series of indices

 Keep table size prime

 Define load factor: 

 Rehashing: O(n)

 Great performance (usually)

 Can‟t efficiently do findMin, in-order traversal, etc.

0

…

TableSize –1 

hash function:

index = h(key)

hash table

key space (e.g., integers, strings)

N

TableSize
 



Hash tables: Separate Chaining
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 Each array cell is a „bucket‟ that can store several 

items (say, using a linked sort); each (conceptually) 

boundless

 : average # items per bucket

  can be greater than 1
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Oper-

ation

Description Run-time

Find Go to list at index, step through until 

we find correct item or reach the 

end

O() expected

O(n) worst

Insert Go to list at index, insert at start O(1)

Delete Go to list at index, find and delete O() expected

O(n) worst



Hash tables: Open Addressing
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 Keep all items directly in table

 „Probe‟ indices according to 
(h(key) + f(i)) % TableSize

where i is the # of the attempt (starting at i=0)

 Linear probing: f(i)=i

 Will always find a spot if one is available

 Problem of primary clustering

 Quadratic probing: f(i)=i2

 Will find space if <1/2 & TableSize is prime

 Problem of secondary clustering

 Double Hashing: f(i)=i*g(key)

 Avoids clustering problems (if g is well chosen)

 g(key) must never evaluate to 0

 =1 means table is full; no inserts possible

0 8

1 109

2 10

3 /

4 /

5 /

6 /

7 /

8 38

9 19

Insert: 38, 19, 8, 109, 10

Using Linear Probing

Operation Description Run-time

Find Probe until found (success) or 

empty space hit (fail)

O(1), O(n); specific 

estimates in slides

Insert Probe until found – replace 

value, or until empty  - place at

that index

O(1), O(n); specific 

estimates in slides

Delete Use lazy deletion Same as find


