CSE 332
 Review Slides

Terminology

- Abstract Data Type (ADT)
- Mathematical description of a "thing" with set of operations on that "thing"; doesn't specify the details of how it's done
- Ex, Stack: You push stuff and you pop stuff
\square Could use an array, could use a linked list
- Algorithm
* A high level, language-independent description of a step-by-step process
- Ex: Binary search
- Data structure
- A specific family of algorithms \& data for implementing an ADT
- Ex: Linked list stack
- Implementation of a data structure
- A specific implementation in a specific language

Big Oh's Family

- Big Oh: Upper bound: $O(f(n))$ is the set of all functions asymptotically less than or equal to $f(n)$
- $g(n)$ is in $O(f(n))$ if there exist constants c and n_{0} such that

$$
g(n) \leq c f(n) \text { for all } n \geq n_{0}
$$

- Big Omega: Lower bound: $\Omega(\mathrm{f}(n))$ is the set of all functions asymptotically greater than or equal to $f(n)$
- $g(n)$ is in $\Omega(f(n))$ if there exist constants c and n_{0} such that $g(n) \geq c f(n)$ for all $n \geq n_{0}$
- Big Theta: Tight bound: $\theta(f(n))$ is the set of all functions asymptotically equal to $f(n)$
- Intersection of $O(f(n))$ and $\Omega(f(n))$ (use different c values)

Common recurrence relations

$$
\begin{array}{ll}
T(n)=O(1)+T(n-1) & \\
T(n)=O(1)+2 T(n / 2) & \text { linear } \\
T(n)=O(1)+T(n / 2) & \\
T(n)=O(1)+2 T(n-1) & \text { logarithmic } \\
T(n)=O(n)+T(n-1) & \text { exponential } \\
T(n)=O(n)+T(n / 2) & \text { quadratic } \\
T(n)=O(n)+2 T(n / 2) & \\
\text { linear } \\
O(\mathrm{n} \log \mathrm{n})
\end{array}
$$

- Solving to a closed form (summary):
, Ex: T(n)=2+T(n-1), T(1)=5
Expand: $T(n)=2+T(n-1)=2+2+T(n-2)=\ldots=2+2+2+\ldots+2+5$
Determine \# of times recurrence was applied to get to the base case; call it k

$$
T(n)=2(k-1)+5=2 k+3
$$

- Determine k in terms of n ; here $\mathrm{k}=\mathrm{n}$; plug into equation $T(n)=2 n+3$

Binary Heap: Priority Queue DS

- Structure property : A complete binary tree
- Heap ordering property: For every (non-root) node the parent node's value is less than the node's value
- Array representation; index starting at 1
- Poor performance for general 'find'

Operation	Description	Run-time
Insert	Place in next available spot; percUp	$\mathrm{O}(\mathrm{logn})$ worst; $\mathrm{O}(1)$ expected
DeleteMin	Remember root value; place last node in root; percDown	$\mathrm{O}(\operatorname{logn})$
BuildHeap	Treat array as heap; percDown elements index <= size/2	$\mathrm{O}(\mathrm{n})$

Binary Search Tree: Dictionary ADT

- Structure property : Binary tree; values in left subtree < this node's value; values in right subtree > this node's value
- Height $\mathrm{O}(\operatorname{logn})$ if balanced; $\mathrm{O}(\mathrm{n})$ if not
- No guarantees on balance

Operation	Description	Run-time
Find	Check my value against node's: go left or right	$\mathrm{O}(\mathrm{n})$ worst
Insert	Traverse like in find; create new node there	$\mathrm{O}(\mathrm{n})$ worst
Delete	Traverse like in find; 3 cases: has no children, 1 child or 2 children	$\mathrm{O}(\mathrm{n})$ worst

AVL Tree: Dictionary ADT

- Structure property : BST
- Balance property: |left.height-right.height|<=1
- Balance guaranteed; O(logn) height
- Perform $\mathrm{O}(1)$ rotations to fix balance; at most one required per insert
- 4 rotation cases; depend on
- At what node the imbalance is detected
- At which of 4 subtrees the insertion was performed, relative to the detecting node

Operation	Description	Run-time
Find	BST find	O(logn)
Insert	BST insert, then recurse back up, check for imbalance \& perform necessary rotations	O(logn)

B-Tree: Dictionary ADT

- 2 constants: M \& L
, Internal nodes (except root) have between $\lceil M / 2\rceil$ and M children (inclusive)
- Leaf nodes have between $\lceil L / 2\rceil$ and L data items (inclusive)
, Root has between 2 \& M children (inclusive); or between $0 \& L$ data items if a leaf
, Base M \& L on disk block size
- All leaves on same level; all data at leaves
- If in child branch, value is >= prev key in parent, < next key
- Goal: Shallow tree to reduce disk accesses
- Height: $\mathrm{O}\left(\log _{M} n\right)$

Oper- ation	Description	Run-time
Find	Binary Search to find which child to take on each node; Binary Search in leaf to find data item	$O\left(\log _{2} M \log _{M} n\right)$
Insert	Find leaf; insert in sorted order; if overflow, split leaf; if parent overflows, split parent; may need to recursively split all the way to root	$O\left(L+M \log _{M} n\right)$ worst $($ split root $)$ $O\left(L+\log _{2} M \log _{M} n\right)$ expected
Delete	Find leaf; remove value, shift others as appropriate; if underflow, adopt and/or merge; may need to merge all the way to the root	$O\left(L+M \log _{M} n\right)$ worst $($ replace root $)$ $O\left(L+\log _{2} M \log _{M} n\right)$ expected

Hash tables (in general): Dictionary ADT (pretty much)

- Store everything in an array
- To do this, provide a mapping from key to index
" Ex: "Jean Valjean" $\rightarrow 24601$
- Keyspace >> tablesize; need to deal with 'collisions'; we consider 2 varieties:
- Separate Chaining: Linked list at each index
- Open Addressing: Store all in table; give series of indices
- Keep table size prime $\lambda=\frac{\mathrm{N}}{\text { TableSize }}$
- Rehashing: O(n)
- Great performance (usually)
- Can't efficiently do findMin, in-order traversal, etc.

Hash tables: Separate Chaining

- Each array cell is a 'bucket' that can store several items (say, using a linked sort); each (conceptually) boundless
- λ : average \# items per bucket
- λ can be greater than 1

Oper- ation	Description	Run-time
Find	Go to list at index, step through until we find correct item or reach the end	$\mathrm{O}(\lambda)$ expected $\mathrm{O}(\mathrm{n})$ worst
Insert	Go to list at index, insert at start	$\mathrm{O}(1)$
Delete	Go to list at index, find and delete	$\mathrm{O}(\lambda)$ expected $\mathrm{O}(n)$ worst

Hash tables: Open Addressing

- Keep all items directly in table
- 'Probe' indices according to (h(key) $+\mathrm{f}(\mathrm{i})$) \% TableSize where i is the \# of the attempt (starting at $\mathrm{i}=0$)
- Linear probing: $f(i)=i$
, Will always find a spot if one is available
- Problem of primary clustering
- Quadratic probing: $f(i)=i^{2}$
, Will find space if $\lambda<1 / 2$ \& TableSize is prime
- Problem of secondary clustering
- Double Hashing: $f(i)=i^{*} g$ (key)
- Avoids clustering problems (if g is well chosen)
- g (key) must never evaluate to 0
- $\quad \lambda=1$ means table is full; no inserts possible

Operation	Description	Run-time
Find	Probe until found (success) or empty space hit (fail)	$\mathrm{O}(1), \mathrm{O}(\mathrm{n}) ;$ specific estimates in slides
Insert	Probe until found - replace value, or until empty - place at that index	$\mathrm{O}(1), \mathrm{O}(\mathrm{n})$; specific estimates in slides
Delete	Use lazy deletion	Same as find

