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Terminology

 Abstract Data Type (ADT)
 Mathematical description of a “thing” with set of operations 

on that “thing”; doesn‟t specify the details of how it‟s done
 Ex, Stack: You push stuff and you pop stuff
 Could use an array, could use a linked list

 Algorithm
 A high level, language-independent description of a step-

by-step process
 Ex: Binary search

 Data structure
 A specific family of algorithms & data for implementing an 

ADT
 Ex: Linked list stack

 Implementation of a data structure
 A specific implementation in a specific language



Big Oh’s Family
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 Big Oh: Upper bound: O( f(n) ) is the set of all functions 

asymptotically less than or equal to f(n)

 g(n) is in O( f(n) ) if there exist  constants c and n0 such that 

g(n)  c f(n) for all n  n0

 Big Omega: Lower bound: ( f(n) ) is the set of all 

functions asymptotically greater than or equal to f(n)

 g(n) is in ( f(n) ) if there exist  constants c and n0 such that 

g(n)  c f(n) for all n  n0

 Big Theta: Tight bound: ( f(n) ) is the set of all functions 

asymptotically equal to f(n)

 Intersection of O( f(n) ) and ( f(n) )  (use different c values)



Common recurrence relations
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T(n) = O(1) + T(n-1) linear

T(n) = O(1) + 2T(n/2) linear

T(n) = O(1) + T(n/2) logarithmic

T(n) = O(1) + 2T(n-1) exponential

T(n) = O(n) + T(n-1) quadratic

T(n) = O(n) + T(n/2) linear

T(n) = O(n) + 2T(n/2) O(n log n)

 Solving to a closed form (summary):
 Ex: T(n)=2+T(n-1), T(1)=5

 Expand: T(n)=2+T(n-1)=2+2+T(n-2)=…=2+2+2+…+2+5

 Determine # of times recurrence was applied to get to the base 
case; call it k

 T(n)=2(k-1)+5=2k+3

 Determine k in terms of n; here k=n; plug into equation

 T(n)=2n+3



Binary Heap: Priority Queue DS
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 Structure property : A complete binary tree

 Heap ordering property: For every (non-root) node the parent node‟s 

value is less than the node‟s value

 Array representation; index starting at 1

 Poor performance for general „find‟
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Operation Description Run-time

Insert Place in next available

spot; percUp

O(logn) worst; O(1) 

expected

DeleteMin Remember root value;

place last node in root; 

percDown

O(logn)

BuildHeap Treat array as heap; 

percDown elements 

index <= size/2

O(n)



Binary Search Tree:  Dictionary ADT
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 Structure property : Binary tree; values in left subtree < this 

node‟s value; values in right subtree > this node‟s value

 Height O(logn) if balanced; O(n) if not

 No guarantees on balance

Operation Description Run-time

Find Check my value against 

node‟s: go left or right

O(n) worst

Insert Traverse like in find; 

create new node there

O(n) worst

Delete Traverse like in find; 3 

cases: has no children, 

1 child or 2 children

O(n) worst
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AVL Tree:  Dictionary ADT

7

 Structure property : BST

 Balance property: |left.height-right.height|<=1

 Balance guaranteed; O(logn) height

 Perform O(1) rotations to fix balance; at most one required per insert

 4 rotation cases; depend on

 At what node the imbalance is detected

 At which of 4 subtrees the insertion was performed, relative to the detecting 

node

Operation Description Run-time

Find BST find O(logn)

Insert BST insert, then recurse

back up, check for 

imbalance & perform 

necessary rotations

O(logn)
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B-Tree:  Dictionary ADT
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 2 constants: M & L

 Internal nodes (except root) have between M/2 and M children (inclusive)

 Leaf nodes have between L/2 and L data items (inclusive)

 Root has between 2 & M children (inclusive); or between 0 & L data items if a leaf

 Base M & L on disk block size

 All leaves on same level; all data at leaves

 If in child branch, value is >= prev key in parent, < next key

 Goal: Shallow tree to reduce disk accesses

 Height: O(logM n)

Oper-

ation

Description Run-time

Find Binary Search to find which child to 

take on each node; Binary Search in 

leaf to find data item

O(log2 M logM n)

Insert Find leaf; insert in sorted order; if 

overflow, split leaf; if parent 

overflows, split parent; may need to 

recursively split all the way to root

O(L + M logM n) worst 

(split root)
O(L + log2 M logM n) 

expected

Delete Find leaf; remove value, shift others 

as appropriate; if underflow, adopt 

and/or merge; may need to merge 

all the way to the root

O(L + M logM n) worst 

(replace root)
O(L + log2 M logM n) 

expected
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Hash tables (in general): Dictionary ADT 

(pretty much)
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 Store everything in an array

 To do this, provide a mapping from key to index
 Ex: “Jean Valjean” → 24601

 Keyspace >> tablesize; need to deal with „collisions‟; we consider 2 
varieties:
 Separate Chaining:  Linked list  at each index

 Open Addressing:  Store all in table; give series of indices

 Keep table size prime

 Define load factor: 

 Rehashing: O(n)

 Great performance (usually)

 Can‟t efficiently do findMin, in-order traversal, etc.
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TableSize –1 

hash function:

index = h(key)

hash table

key space (e.g., integers, strings)

N
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Hash tables: Separate Chaining
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 Each array cell is a „bucket‟ that can store several 

items (say, using a linked sort); each (conceptually) 

boundless

 : average # items per bucket

  can be greater than 1
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Oper-

ation

Description Run-time

Find Go to list at index, step through until 

we find correct item or reach the 

end

O() expected

O(n) worst

Insert Go to list at index, insert at start O(1)

Delete Go to list at index, find and delete O() expected

O(n) worst



Hash tables: Open Addressing
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 Keep all items directly in table

 „Probe‟ indices according to 
(h(key) + f(i)) % TableSize

where i is the # of the attempt (starting at i=0)

 Linear probing: f(i)=i

 Will always find a spot if one is available

 Problem of primary clustering

 Quadratic probing: f(i)=i2

 Will find space if <1/2 & TableSize is prime

 Problem of secondary clustering

 Double Hashing: f(i)=i*g(key)

 Avoids clustering problems (if g is well chosen)

 g(key) must never evaluate to 0

 =1 means table is full; no inserts possible
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Insert: 38, 19, 8, 109, 10

Using Linear Probing

Operation Description Run-time

Find Probe until found (success) or 

empty space hit (fail)

O(1), O(n); specific 

estimates in slides

Insert Probe until found – replace 

value, or until empty  - place at

that index

O(1), O(n); specific 

estimates in slides

Delete Use lazy deletion Same as find


