
CSE 332

Review Slides

Tyler Robison

Summer 2010

1

Terminology

 Abstract Data Type (ADT)
 Mathematical description of a “thing” with set of operations

on that “thing”; doesn‟t specify the details of how it‟s done
 Ex, Stack: You push stuff and you pop stuff
 Could use an array, could use a linked list

 Algorithm
 A high level, language-independent description of a step-

by-step process
 Ex: Binary search

 Data structure
 A specific family of algorithms & data for implementing an

ADT
 Ex: Linked list stack

 Implementation of a data structure
 A specific implementation in a specific language

Big Oh’s Family

3

 Big Oh: Upper bound: O(f(n)) is the set of all functions

asymptotically less than or equal to f(n)

 g(n) is in O(f(n)) if there exist constants c and n0 such that

g(n)  c f(n) for all n  n0

 Big Omega: Lower bound: (f(n)) is the set of all

functions asymptotically greater than or equal to f(n)

 g(n) is in (f(n)) if there exist constants c and n0 such that

g(n)  c f(n) for all n  n0

 Big Theta: Tight bound: (f(n)) is the set of all functions

asymptotically equal to f(n)

 Intersection of O(f(n)) and (f(n)) (use different c values)

Common recurrence relations

4

T(n) = O(1) + T(n-1) linear

T(n) = O(1) + 2T(n/2) linear

T(n) = O(1) + T(n/2) logarithmic

T(n) = O(1) + 2T(n-1) exponential

T(n) = O(n) + T(n-1) quadratic

T(n) = O(n) + T(n/2) linear

T(n) = O(n) + 2T(n/2) O(n log n)

 Solving to a closed form (summary):
 Ex: T(n)=2+T(n-1), T(1)=5

 Expand: T(n)=2+T(n-1)=2+2+T(n-2)=…=2+2+2+…+2+5

 Determine # of times recurrence was applied to get to the base
case; call it k

 T(n)=2(k-1)+5=2k+3

 Determine k in terms of n; here k=n; plug into equation

 T(n)=2n+3

Binary Heap: Priority Queue DS

5

 Structure property : A complete binary tree

 Heap ordering property: For every (non-root) node the parent node‟s

value is less than the node‟s value

 Array representation; index starting at 1

 Poor performance for general „find‟

996040

8020

10

50 700

85

Operation Description Run-time

Insert Place in next available

spot; percUp

O(logn) worst; O(1)

expected

DeleteMin Remember root value;

place last node in root;

percDown

O(logn)

BuildHeap Treat array as heap;

percDown elements

index <= size/2

O(n)

Binary Search Tree: Dictionary ADT

6

 Structure property : Binary tree; values in left subtree < this

node‟s value; values in right subtree > this node‟s value

 Height O(logn) if balanced; O(n) if not

 No guarantees on balance

Operation Description Run-time

Find Check my value against

node‟s: go left or right

O(n) worst

Insert Traverse like in find;

create new node there

O(n) worst

Delete Traverse like in find; 3

cases: has no children,

1 child or 2 children

O(n) worst

3

1171

84

5

AVL Tree: Dictionary ADT

7

 Structure property : BST

 Balance property: |left.height-right.height|<=1

 Balance guaranteed; O(logn) height

 Perform O(1) rotations to fix balance; at most one required per insert

 4 rotation cases; depend on

 At what node the imbalance is detected

 At which of 4 subtrees the insertion was performed, relative to the detecting

node

Operation Description Run-time

Find BST find O(logn)

Insert BST insert, then recurse

back up, check for

imbalance & perform

necessary rotations

O(logn)

4

131062

115

8

14127 9

15

B-Tree: Dictionary ADT

8

 2 constants: M & L

 Internal nodes (except root) have between M/2 and M children (inclusive)

 Leaf nodes have between L/2 and L data items (inclusive)

 Root has between 2 & M children (inclusive); or between 0 & L data items if a leaf

 Base M & L on disk block size

 All leaves on same level; all data at leaves

 If in child branch, value is >= prev key in parent, < next key

 Goal: Shallow tree to reduce disk accesses

 Height: O(logM n)

Oper-

ation

Description Run-time

Find Binary Search to find which child to

take on each node; Binary Search in

leaf to find data item

O(log2 M logM n)

Insert Find leaf; insert in sorted order; if

overflow, split leaf; if parent

overflows, split parent; may need to

recursively split all the way to root

O(L + M logM n) worst

(split root)
O(L + log2 M logM n)

expected

Delete Find leaf; remove value, shift others

as appropriate; if underflow, adopt

and/or merge; may need to merge

all the way to the root

O(L + M logM n) worst

(replace root)
O(L + log2 M logM n)

expected

3

14

15

16

15

18

30

32

32

36

18

Hash tables (in general): Dictionary ADT

(pretty much)

9

 Store everything in an array

 To do this, provide a mapping from key to index
 Ex: “Jean Valjean” → 24601

 Keyspace >> tablesize; need to deal with „collisions‟; we consider 2
varieties:
 Separate Chaining: Linked list at each index

 Open Addressing: Store all in table; give series of indices

 Keep table size prime

 Define load factor:

 Rehashing: O(n)

 Great performance (usually)

 Can‟t efficiently do findMin, in-order traversal, etc.

0

…

TableSize –1

hash function:

index = h(key)

hash table

key space (e.g., integers, strings)

N

TableSize
 

Hash tables: Separate Chaining

10

 Each array cell is a „bucket‟ that can store several

items (say, using a linked sort); each (conceptually)

boundless

 : average # items per bucket

  can be greater than 1

0

1 /

2

3 /

4 /

5 /

6 /

7

8 /

9 /

10 /

107 /

12 22 /

Oper-

ation

Description Run-time

Find Go to list at index, step through until

we find correct item or reach the

end

O() expected

O(n) worst

Insert Go to list at index, insert at start O(1)

Delete Go to list at index, find and delete O() expected

O(n) worst

Hash tables: Open Addressing

11

 Keep all items directly in table

 „Probe‟ indices according to
(h(key) + f(i)) % TableSize

where i is the # of the attempt (starting at i=0)

 Linear probing: f(i)=i

 Will always find a spot if one is available

 Problem of primary clustering

 Quadratic probing: f(i)=i2

 Will find space if <1/2 & TableSize is prime

 Problem of secondary clustering

 Double Hashing: f(i)=i*g(key)

 Avoids clustering problems (if g is well chosen)

 g(key) must never evaluate to 0

 =1 means table is full; no inserts possible

0 8

1 109

2 10

3 /

4 /

5 /

6 /

7 /

8 38

9 19

Insert: 38, 19, 8, 109, 10

Using Linear Probing

Operation Description Run-time

Find Probe until found (success) or

empty space hit (fail)

O(1), O(n); specific

estimates in slides

Insert Probe until found – replace

value, or until empty - place at

that index

O(1), O(n); specific

estimates in slides

Delete Use lazy deletion Same as find

