
CSE332: Data Abstractions

Lecture 9: BTrees

Tyler Robison

Summer 2010

1

BTrees

2

B
BB

B

B

B

B

6
8
9
10

12
14
16
17

20
22

27
28
32

34
38
39
41

44
47
49

50
60
70

12 44

6 20 27 34 50

19

24

1
2
4

X X

Our goal

3

 Problem: What if our dictionary has so much data, most of it resides
on disk; very slow to access

 Say we had to do a disk access for each node access
 Unbalanced BST with n nodes: n disk accesses (worst case)

 AVL tree: log2n accesses (worst case)
 log2(2

30)=30 disk accesses still a bit slow

 An improvement, but we can do better

 Idea: A balanced tree (logarithmic height) that is even shallower than
AVL trees so that we can minimize disk accesses and exploit disk-
block size
 Increase the branching factor to decrease the height

 Gives us height log3n, log10n, log50n etc., based on branching factor

 Asymptotically still O(logn) height though

M-ary Search Tree

4

 # hops for find: If balanced, using logM n instead of log2 n
 If M=256, that’s an 8x improvement

 Example: M = 256 and n = 240 that’s 5 instead of 40

 To decide which branch to take, divide into portions
 Binary tree: Less than node value or greater?

 M-ary: In range 1? In range 2? In range 3?... In range M?

 Runtime of find if balanced: O(log2 M logM n)
 Hmmm… logM n is the height we traverse. Why the log2M multiplier?

 log2M: At each step, find the correct child branch to take using binary search

• Build some kind of search tree with branching factor M:

– Say, each node has an array of M sorted children (Node[])

– Choose M to fit node snugly into a disk block (1 access per

node)

Problems with how to proceed

5

 What should the order property be? How do we
decide the ‘portion’ each child will take?

 How would you rebalance (ideally without more
disk accesses)?

 Storing real data at inner-nodes (like in a BST)
seems kind of wasteful…
 To access the node, will have to load data from disk,

even though most of the time we won’t use it

B+ Trees (we and the book say “B Trees”)

6

 Two types of nodes: internal nodes &
leaves

 Each internal node has room for up to
M-1 keys and M children
 In example on right, M=7

 No other data; all data at the leaves!

 Think of M-1 keys stored in internal
nodes as ‘signposts’ used to find a path
to a leaf

 Order property:
Subtree between keys x and y contains

only data that is  x and < y (notice
the )

 Leaf nodes (not shown here) have up
to L sorted data items

 Remember:
 Leaves store data

 Internal nodes are ‘signposts’

3 7 12 21

21x12x<217x<123x<7x<3

Empty cells at the end are currently

unused, but may get filled in later

What’s the ‘B’ for? Wikipedia quote from

1979 textbook:

The origin of "B-tree" has never been

explained by the authors. As we shall see,

"balanced," "broad," or "bushy" might

apply. Others suggest that the "B" stands

for Boeing. Because of his contributions,

however, it seems appropriate to think of B-

trees as "Bayer"-trees.

Find

7

 Different from BST in that we don’t store values at internal
nodes

 But find is still an easy recursive algorithm, starting at
root
 At each internal-node do binary search on the (up to) M-1 keys

to find the branch to take

 At the leaf do binary search on the (up to) L data items

 But to get logarithmic running time, we need a balance
condition…

3 7 12 21

21x12x<217x<123x<7x<3

Structure Properties

8

 Non-root Internal nodes
 Have between M/2 and M children (inclusive), i.e., at least half full

 Leaf nodes
 All leaves at the same depth

 Have between L/2 and L data items (inclusive), i.e., at least half full

 Root (special case)
 If tree has  L items, root is a leaf (occurs when starting up; otherwise

unusual); can have any number of items  L

 Else has between 2 and M children

(Any M > 2 and L will work; picked based on disk-block size)

 Uh, why these bounds for internal nodes & children?
 Upper bounds make sense: don’t want one long list; pick to fit in block

 Why lower bounds?
 Ensures tree is sufficiently ‘filled in’: Don’t have unnecessary height, for instance

 Guarantees ‘broadness’

 We’ll see more when we cover insert & delete

Remember: M=max # children

L=max items in leaf

Example

9

Suppose M=4 (max children) and L=5 (max items at leaf)

 All internal nodes have at least 2 children

 All leaves have at least 3 data items (only showing keys)

 All leaves at same depth

6

8

9

10

12

14

16

17

20

22

27

28

32

34

38

39

41

44

47

49

50

60

70

12 44

6 20 27 34 50

19

24

1

2

4

Note: Only shows 1 key, but has 2

children, so it’s okay

Note on notation: Inner nodes drawn horizontally,

leaves vertically to distinguish. Include empty cells

Balanced enough

10

Not too difficult to show height h is logarithmic in number of

data items n

 Let M > 2 (if M = 2, then a list tree is legal – no good!)

 Because all nodes are at least half full (except root may have

only 2 children) and all leaves are at the same level, the

minimum number of data items n for a height h>0 tree is…

n  2 M/2 h-1 L/2

minimum number

of leaves

minimum data

per leaf

Exponential in height

because M/2 > 1

Disk Friendliness

11

What makes B trees so disk friendly?

 Many keys stored in one node

 All brought into memory in one disk access

 IF we pick M wisely

 Makes the binary search over M-1 keys totally worth it
(insignificant compared to disk access times)

 Internal nodes contain only keys
 Any find wants only one data item; wasteful to load

unnecessary items with internal nodes

 So only bring one leaf of data items into memory

 Data-item size doesn’t affect what M is

Maintaining balance

12

 So this seems like a great data structure (and it is)

 But we haven’t implemented the other dictionary
operations yet
 insert

 delete

 As with AVL trees, the hard part is maintaining
structure properties
 Example: for insert, there might not be room at the

correct leaf

 Unlike AVL trees, there are no rotations 

Building a B-Tree (insertions)

13

The empty B-Tree (the

root will be a leaf at the

beginning)

M = 3 L = 3

Remember: Horizontal=internal node; Vertical=leaf

Insert(3)
3

Insert(18)
3

18
Insert(14)

3

14

18

Just need to keep

data in order

Insert(30)
3

14

18

14

3

14

18

30

18

3

14

18

30 ???

M = 3 L = 3

•When we ‘overflow’ a leaf, we split it into 2 leaves

•Parent gains another child

•If there is no parent (like here), we create one; how do we pick the key

shown in it?

•Smallest element in right tree

Insert(32)
3

14

18

30

18

Insert(36)

Insert(15)

M = 3 L = 3

3

14

18

30

18

32

3

14

18

30

18

32

36

32

3

14

18

30

18

32

36

32

15

15

Split leaf again

Insert(16)

3

14

15

18

30

18 32

32

36

M = 3 L = 3

3

14

15

18

30

18 32

32

36

16

18

30

18 32

32

36

3

14

15

16

15

16

15 32

18 What

now?

Split the internal node

(in this case, the root)

Insert(12,40,45,38)

3

14

15

16

15

18

30

32

32

36

18

3

12

14

15

16

15

18

30

32 40

32

36

38

18

40

45

M = 3 L = 3

17

Note: Given the leaves and the structure of the

tree, we can always fill in internal node keys;

‘the smallest value in my right branch’

Insertion Algorithm

18

1. Traverse from the root to the proper leaf. Insert the

data in its leaf in sorted order

2. If the leaf now has L+1 items, overflow!

 Split the leaf into two leaves:

 Original leaf with (L+1)/2 items

 New leaf with (L+1)/2 items

 Attach the new child to the parent

 Adding new key to parent in sorted order

Insertion algorithm continued

19

3. If an internal node has M+1 children, overflow!

 Split the node into two nodes
 Original node with (M+1)/2 children

 New node with (M+1)/2 children

 Attach the new child to the parent

 Adding new key to parent in sorted order

Splitting at a node (step 3) could make the parent
overflow too
 So repeat step 3 up the tree until a node doesn’t

overflow

 If the root overflows, make a new root with two children

 This is the only case that increases the tree height

Efficiency of insert

20

 Find correct leaf:

 Insert in leaf:

 Split leaf:

 Split parents all the way up to root:

Worst-case for insert: O(L + M logM n)

But it’s not that bad:

 Splits are not that common (have to fill up nodes)

 Splitting the root is extremely rare

 Remember disk accesses were the name of the game:

O(logM n)

O(log2 M logM n)

O(L)

O(L)
O(M logM n)

Another option (we won’t use)

21

 Adoption

 When leaf gains L+1 items, instead of splitting, try to put

one ‘up for adoption’

 Check neighboring leaves; if they have space, they can take it

 If not, will have to split anyway

 Doesn’t change worst-case asymptotic run-time

 Can also use for internal node; pass off child pointers

Adoption example

22

3

14

18

30

18

Insert(31)

32

Adoption 3

14

30

31

30

18 32

 Adoption

 If overflow, then try to pass on to neighbor

 If no neighbor has space, split

Same example, with splitting

23

3

14

18

30

18

Insert(31)

32

3

14

18

30

18

31

32

31

Splitting

 For this class, we’ll stick with splitting

 No adoption

 But good to be aware of alternatives

