CSE332: Data Abstractions

Lecture 8: Memory Hierarchy

Tyler Robison
Summer 2010




Now what?

» We have a data structure for the dictionary ADT that
has worst-case O(1og n) behavior

One of several interesting/fantastic balanced-tree
approaches

» We are about to learn another balanced-tree
approach: B Trees

» First, to motivate why B trees are better for really
Iarge dictionaries (say, over 1GB = 230 pytes), need to
understand some memory hierarchy basics

Don’t always assume “every memory access has an
unimportant O(1) cost”

Learn more in CSE351/333/471 (and CSE378), focus here
on relevance to data structures and efficiency



A typical hierarchy

CPU

L1 Cache: 128KB = 21«

“Every desktop/laptop/server is
different” but here is a plausible
configuration these days

instructions (e.g., addition): 23%/sec

get datain L1: 22°%/sec = 2
Instructions

L2 Cache: 2MB = 221

get data in L2: 225/sec = 30 inst

Main memory: 2GB = 231

get data in main memory:
2%?[sec = 250 inst

get data from “new
—| place” on disk:

Disk: 1TB = 240

2'/sec =8,000,000 inst

“streamed”; 218/sec



Morals

It is much faster to do: Than:
5 million arithmetic ops 1 disk access
2500 L2 cache accesses 1 disk access
400 main memory accesses 1 disk access

Why are computers built this way?
Physical realities (speed of light, closeness to CPU)
Cost (price per byte of different technologies)

Disks get much bigger not much faster

Spinning at 7200 RPM accounts for much of the slowness and
unlikely to spin faster in the future

Speedup at higher levels makes lower levels relatively
slower

Later in the course: more than 1 CPU!



“Fuggedaboutit”, usually

The hardware automatically moves data into the caches
from main memory for you

Replacing items already there
So algorithms much faster if “data fits in cache” (often does)

Disk accesses are done by software (e.g., ask operating
system to open a file or database to access some
data)

So most code “just runs” but sometimes it's worth
designing algorithms / data structures with knowledge
of memory hierarchy

And when you do, you often need to know one more thing...



Block/line size

» Moving data up the memory hierarchy is slow because
of latency (think distance-to-travel)
Since we’re making the trip anyway, may as well carpool
Get a block of data in the same time it would take to get a byte
What to send? How about nearby memory:

It's easy (close by)
And likely to be asked for soon (spatial locality)

» Side note: Once in cache, may as well keep it around
for awhile; accessed once, a value is more likely to be
accessed again in the near future (more likely than
some random other value): temporal locality



Block/line size

» The amount of data moved from disk into memory
Is called the “block” size or the “(disk) page” size

Not under program control

» The amount of data moved from memory Iinto
cache is called the “line” size
As in “cache line”
Not under program control

» Not under our control, but good to be aware of



Connection to data structures

» An array benefits more than a linked list from

block moves

Language (e.g., Java) implementation can put the
linked list nodes anywhere, whereas array is typically

contiguous memory
Arrays benefit more from spatial locality

» Note: “array” doesn’t mean “good”
Sufficiently large array won't fit in one block
Binary heaps “make big jumps” to percolate (different
block)



BSTs?

» Since looking things up in balanced binary search
trees is O(1og n), even for n = 239 (512GB) we

don’t have to worry about minutes or hours

» Still, number of disk accesses matters
AVL tree could have height of, say, 55
Which, based on our proof, is a lot of nodes

Most of the nodes will be on disk: the tree is shallow,
but it is still many gigabytes big so the tree cannot fit
IN memory

Even if memory holds the first 25 nodes on our path, we still
need 30 disk accesses



Note about numbers; moral

» All the numbers in this lecture are “ballpark” “back of
the envelope” figures

» Even if they are off by, say, a factor of 5, the moral Is
the same: If your data structure is mostly on disk,
you want to minimize disk accesses

» A better data structure in this setting would exploit
the block size to avoid disk accesses...

10



