
CSE332: Data Abstractions

Lecture 8: Memory Hierarchy

Tyler Robison

Summer 2010

1



Now what?

2

 We have a data structure for the dictionary ADT that 
has worst-case O(log n) behavior
 One of several interesting/fantastic balanced-tree 

approaches

 We are about to learn another balanced-tree 
approach: B Trees

 First, to motivate why B trees are better for really 
large dictionaries (say, over 1GB = 230 bytes), need to 
understand some memory-hierarchy basics
 Don’t always assume “every memory access has an 

unimportant O(1) cost”

 Learn more in CSE351/333/471 (and CSE378), focus here 
on relevance to data structures and efficiency



A typical hierarchy

3

“Every desktop/laptop/server is 
different” but here is a plausible 
configuration these days

CPU

Disk: 1TB = 240

Main memory: 2GB = 231

L2 Cache: 2MB = 221

L1 Cache: 128KB = 217

instructions (e.g., addition): 230/sec

get data in L1: 229/sec = 2 

instructions

get data in L2: 225/sec = 30 inst 

get data in main memory:

222/sec = 250 inst

get data from “new 

place” on disk:

27/sec =8,000,000 inst

“streamed”: 218/sec



Morals

4

It is much faster to do: Than:

5 million arithmetic ops 1 disk access

2500 L2 cache accesses 1 disk access

400 main memory accesses 1 disk access

Why are computers built this way?

 Physical realities (speed of light, closeness to CPU)

 Cost (price per byte of different technologies)

 Disks get much bigger not much faster

 Spinning at 7200 RPM accounts for much of the slowness and 
unlikely to spin faster in the future

 Speedup at higher levels makes lower levels relatively
slower

 Later in the course: more than 1 CPU!



“Fuggedaboutit”, usually

5

The hardware automatically moves data into the caches 
from main memory for you
 Replacing items already there

 So algorithms much faster if “data fits in cache” (often does)

Disk accesses are done by software (e.g., ask operating 
system to open a file or database to access some 
data)

So most code “just runs” but sometimes it’s worth 
designing algorithms / data structures with knowledge 
of memory hierarchy
 And when you do, you often need to know one more thing…



Block/line size

6

 Moving data up the memory hierarchy is slow because 

of latency (think distance-to-travel)

 Since we’re making the trip anyway, may as well carpool

 Get a block of data in the same time it would take to get a byte

 What to send? How about nearby memory:

 It’s easy (close by)

 And likely to be asked for soon (spatial locality)

 Side note: Once in cache, may as well keep it around 

for awhile; accessed once, a value is more likely to be 

accessed again in the near future (more likely than 

some random other value): temporal locality



Block/line size

7

 The amount of data moved from disk into memory 

is called the “block” size or the “(disk) page” size

 Not under program control

 The amount of data moved from memory into 

cache is called the “line” size

 As in “cache line”

 Not under program control

 Not under our control, but good to be aware of



Connection to data structures

8

 An array benefits more than a linked list from 

block moves

 Language (e.g., Java) implementation can put the 

linked list nodes anywhere, whereas array is typically 

contiguous memory

 Arrays benefit more from spatial locality

 Note: “array” doesn’t mean “good”

 Sufficiently large array won’t fit in one block

 Binary heaps “make big jumps” to percolate (different 

block)



BSTs?

9

 Since looking things up in balanced binary search 
trees is O(log n), even for n = 239 (512GB) we 

don’t have to worry about minutes or hours

 Still, number of disk accesses matters

 AVL tree could have height of, say, 55

 Which, based on our proof, is a lot of nodes

 Most of the nodes will be on disk: the tree is shallow, 

but it is still many gigabytes big so the tree cannot fit 

in memory

 Even if memory holds the first 25 nodes on our path, we still 

need 30 disk accesses



Note about numbers; moral

10

 All the numbers in this lecture are “ballpark” “back of 

the envelope” figures

 Even if they are off by, say, a factor of 5, the moral is 

the same: If your data structure is mostly on disk, 

you want to minimize disk accesses

 A better data structure in this setting would exploit 

the block size to avoid disk accesses…


