
CSE332: Data Abstractions

Lecture 8: Memory Hierarchy

Tyler Robison

Summer 2010

1



Now what?

2

 We have a data structure for the dictionary ADT that 
has worst-case O(log n) behavior
 One of several interesting/fantastic balanced-tree 

approaches

 We are about to learn another balanced-tree 
approach: B Trees

 First, to motivate why B trees are better for really 
large dictionaries (say, over 1GB = 230 bytes), need to 
understand some memory-hierarchy basics
 Don’t always assume “every memory access has an 

unimportant O(1) cost”

 Learn more in CSE351/333/471 (and CSE378), focus here 
on relevance to data structures and efficiency



A typical hierarchy

3

“Every desktop/laptop/server is 
different” but here is a plausible 
configuration these days

CPU

Disk: 1TB = 240

Main memory: 2GB = 231

L2 Cache: 2MB = 221

L1 Cache: 128KB = 217

instructions (e.g., addition): 230/sec

get data in L1: 229/sec = 2 

instructions

get data in L2: 225/sec = 30 inst 

get data in main memory:

222/sec = 250 inst

get data from “new 

place” on disk:

27/sec =8,000,000 inst

“streamed”: 218/sec



Morals

4

It is much faster to do: Than:

5 million arithmetic ops 1 disk access

2500 L2 cache accesses 1 disk access

400 main memory accesses 1 disk access

Why are computers built this way?

 Physical realities (speed of light, closeness to CPU)

 Cost (price per byte of different technologies)

 Disks get much bigger not much faster

 Spinning at 7200 RPM accounts for much of the slowness and 
unlikely to spin faster in the future

 Speedup at higher levels makes lower levels relatively
slower

 Later in the course: more than 1 CPU!



“Fuggedaboutit”, usually

5

The hardware automatically moves data into the caches 
from main memory for you
 Replacing items already there

 So algorithms much faster if “data fits in cache” (often does)

Disk accesses are done by software (e.g., ask operating 
system to open a file or database to access some 
data)

So most code “just runs” but sometimes it’s worth 
designing algorithms / data structures with knowledge 
of memory hierarchy
 And when you do, you often need to know one more thing…



Block/line size

6

 Moving data up the memory hierarchy is slow because 

of latency (think distance-to-travel)

 Since we’re making the trip anyway, may as well carpool

 Get a block of data in the same time it would take to get a byte

 What to send? How about nearby memory:

 It’s easy (close by)

 And likely to be asked for soon (spatial locality)

 Side note: Once in cache, may as well keep it around 

for awhile; accessed once, a value is more likely to be 

accessed again in the near future (more likely than 

some random other value): temporal locality



Block/line size

7

 The amount of data moved from disk into memory 

is called the “block” size or the “(disk) page” size

 Not under program control

 The amount of data moved from memory into 

cache is called the “line” size

 As in “cache line”

 Not under program control

 Not under our control, but good to be aware of



Connection to data structures

8

 An array benefits more than a linked list from 

block moves

 Language (e.g., Java) implementation can put the 

linked list nodes anywhere, whereas array is typically 

contiguous memory

 Arrays benefit more from spatial locality

 Note: “array” doesn’t mean “good”

 Sufficiently large array won’t fit in one block

 Binary heaps “make big jumps” to percolate (different 

block)



BSTs?

9

 Since looking things up in balanced binary search 
trees is O(log n), even for n = 239 (512GB) we 

don’t have to worry about minutes or hours

 Still, number of disk accesses matters

 AVL tree could have height of, say, 55

 Which, based on our proof, is a lot of nodes

 Most of the nodes will be on disk: the tree is shallow, 

but it is still many gigabytes big so the tree cannot fit 

in memory

 Even if memory holds the first 25 nodes on our path, we still 

need 30 disk accesses



Note about numbers; moral

10

 All the numbers in this lecture are “ballpark” “back of 

the envelope” figures

 Even if they are off by, say, a factor of 5, the moral is 

the same: If your data structure is mostly on disk, 

you want to minimize disk accesses

 A better data structure in this setting would exploit 

the block size to avoid disk accesses…


