
CSE332: Data Abstractions

Lecture 7: AVL Trees

Tyler Robison

Summer 2010

1

The AVL Tree Data Structure
An AVL tree is a BST

In addition: Balance property:

balance of every node is

between -1 and 1

balance(node) = height(node.left) –

height(node.right)

Result: Worst-case depth is O(log n)

How are we going to maintain this? Worry

about that later…

4

131062

115

8

14127 9

15

2

111

84

6

10 12

70

0 0

0

1

1

2

3

Is it an AVL tree?

3

BST? Check

Height/balance property?

Start at leaves, move upward

At each node, check:

Are heights of left & right

within 1 of each other?

3

1171

84

6

2

5

0

0 0 0

1

1

2

3

4

Is this an AVL tree?

4

Null child has height of -1; this is an imbalance

The shallowness bound: Proving that the

AVL balance property is ‘enough’

Let S(h) = the minimum number of nodes in an AVL tree of
height h
 If we can prove that S(h) grows exponentially in h, then a tree

with n nodes has a logarithmic height

 Step 1: Define S(h) inductively using
AVL property
 S(-1)=0, S(0)=1, S(1)=2
 For h 2, S(h) = 1+S(h-1)+S(h-2)
 Build our minimal tree from smaller

minimal trees, w/ heights within 1 of each other

 Step 2: Show this recurrence grows really fast
 Similar to Fibonacci numbers
 Can prove for all h, S(h) > h – 1 where
 is the golden ratio, (1+5)/2, about 1.62

 Growing faster than 1.6h is “plenty” exponential

h-1h-2

h

5

Notational note:

Oval: a node in the

tree

Triangle: a subtree

Before we prove it

 Good intuition from plots comparing:
 S(h) computed directly from the definition

 ((1+5)/2) h

 S(h) is always bigger
 Graphs aren‟t proofs, so let‟s prove it

6

The Golden Ratio

62.1
2

51





This is a special number: If (a+b)/a = a/b, then a = b

• Aside: Since the Renaissance, many artists and architects have

proportioned their work (e.g., length:height) to approximate the
golden ratio

• We will need one special arithmetic fact about  :

2 = ((1+51/2)/2)2

= (1 + 2*51/2 + 5)/4

= (6 + 2*51/2)/4

= (3 + 51/2)/2

= 1 + (1 + 51/2)/2

= 1 + 

7

The proof

Theorem: For all h  0, S(h) > h – 1

Proof: By induction on h

Base cases:
S(0) = 1 > 0 – 1 = 0 S(1) = 2 > 1 – 1  0.62

Inductive case (k > 1):

Inductive hypotheses: S(k) > k – 1 and S(k-1) > k-1 – 1

Show S(k+1) > k+1 – 1

S(k+1) = 1 + S(k) + S(k-1) by definition of S

> 1 + k – 1 + k-1 – 1 by inductive hypotheses

= k + k-1 – 1 by arithmetic (1-1=0)

= k-1 ( + 1) – 1 by arithmetic (factor k-1)

= k-1 2 – 1 by special property of 

= k+1 – 1 by arithmetic (add exponents)

S(-1)=0, S(0)=1, S(1)=2
For h 2, S(h) = 1+S(h-1)+S(h-2)

8

Good news

Proof means that if we have an AVL tree, then find is O(log n)

But as we insert and delete elements, we need to:

1. Track balance

2. Detect imbalance

3. Restore balance

Is this AVL tree balanced?
How about after insert(30)?

92

5

10

7

15

20

9

An AVL Tree

20

92 15

5

10

30

177

0

0 0

011

2 2

3 …

3

value

height

children

Track height at all times!

10 key

10

AVL tree operation overview

 AVL find:

 Same as BST find

 AVL insert:

 First BST insert, then check balance and potentially “fix”
the AVL tree

 Four different imbalance cases

 AVL delete:

 The “easy way” is lazy deletion

 Otherwise, like insert we do the deletion and then have
several imbalance cases

11

Insert: detect potential imbalance

1. Insert the new node as in a BST (a new leaf)

2. For each node on the path from the root to the new
leaf, the insertion may (or may not) have changed the
node‟s height

3. So when returning from insertion in a subtree:
1. Update heights, if necessary

2. Detect height imbalance

3. Perform a rotation to restore balance at that node, if
necessary

Fact that makes it a bit easier:
 We‟ll only need to do one type of rotation in one place to fix

balance

 That is, a single „move‟ can fix it all

12

Insertion Imbalance Example

Insert(6)

Insert(3)

Insert(1)

Third insertion violates

balance property

• happens to be

detected at the

root

What is the only way to

fix this?

6

3

1

2

1

0

6

3

1

0

6
0

13

Fix for ‘left-left’ case: Apply ‘Single Rotation’

 Single rotation: The basic operation we‟ll use to
rebalance
 Move child of unbalanced node into parent position

 Parent becomes the “other” child (always okay in a BST!)

 Other subtrees move in only way BST allows

3

1 6
00

1

AVL Property violated here

Intuition: 3 must become root

new-parent-height = old-parent-height-before-insert

6

3

0

1

2

1

14

4 Different rotation cases

15

 Do the BST insertion, recurse back up the tree and

check for an imbalance at each node

 If an imbalance is detected at node c, we‟ll perform 1

of 4 types of rotations to fix it, depending on which

subtree the insertion was in

c

X
VU

Z

ab

1 2 3 4

Back to our example (case 1)

 Node imbalanced due to insertion somewhere in

left-left grandchild that increased the height

 First we did the insertion, which would make node a
imbalanced

16

6

3

0

1

2

1

a

Z

Y

b

X

h h

h

h+1

h+2 a

Z

Y

b

X

h+1 h

h

h+2

h+3

Before insertion After insertion

The general left-left case

 Rotate at node a, using the fact that in a BST:

X < b < Y < a < Z

• A single rotation restores balance at the node

– To same height as before insertion (so ancestors now balanced)

a

Z

Y

b

X

h+1 h

h

h+2

h+3 b

ZY

a
h+1 h

h

h+1

h+2

X

17

Another example: insert(16)

104

228

15

3 6

19

17 20

24

16

18

Another case 1 example: insert(16)

104

228

15

3 6

19

17 20

24

16

104

8

15

3 6

19

17

2016

22

24

19

The general right-right case (case 4)

 Mirror image to left-left case, so you rotate the other way

 Exact same concept, but need different code

a

ZY

X

h

h
h+1

h+3

b

h+2 b

Z

Y

a

X

h h

h+1

h+1

h+2

20

Two cases to go

Unfortunately, single rotations are not enough for

insertions in the left-right subtree or the right-left

subtree

Simple example: insert(1), insert(6), insert(3)

 First wrong idea: single rotation like we did for left-left

3

6

1

0

1

2

6

1 3

1

0 0

21

Two cases to go

Unfortunately, single rotations are not enough for

insertions in the left-right subtree or the right-left

subtree

Simple example: insert(1), insert(6), insert(3)

 Second wrong idea: single rotation on the child of the

unbalanced node

3

6

1

0

1

2

6

3

1

0

1

2

22

Sometimes two wrongs make a right 

 First idea violated the BST property

 Second idea didn‟t fix balance

 But if we do both single rotations, starting with the
second, it works! (And not just for this example.)

 Double rotation:

1. Rotate problematic child and grandchild

2. Then rotate between self and new child

3

6

1

0

1

2

6

3

1

0

1

2

00

1

1

3

6

Intuition: 3 must become root

23

The general right-left case

a

X

b

c
h-1

h

h

h

V
U

h+1

h+2

h+3

Z

a

X

c

h-1

h+1h

h

V
U

h+2

h+3

Z

b

h

c

X

h-1

h+1

h

h+1

VU

h+2

Z

b

h

a

h

24

Comments

 Like in the left-left and right-right cases, the height of the subtree
after rebalancing is the same as before the insert
 So no ancestor in the tree will need rebalancing

 Does not have to be implemented as two rotations; can just do:

a

X

b

c
h-1

h

h

h

V
U

h+1

h+2

h+3

Z

c

X

h-1

h+1

h

h+1

VU

h+2

Z

b

h

a

h

25

The last case: left-right

 Mirror image of right-left

 Again, no new concepts, only new code to write

a

h-1

h

h
h

VU

h+1

h+2

h+3

Z

X

b

c

c

X

h-1

h+1

h

h+1

VU

h+2

Z

a

h

b

h

26

4 Different rotation cases

27

 Do the BST insertion, recurse back up the tree and

check for an imbalance at each node

 If an imbalance is detected at node c, we‟ll perform 1

of 4 types of rotations to fix it, depending on which

subtree the insertion was in

c

X
VU

Z

ab

1 2 3 4

Insert, summarized

 Insert as in a BST

 Check back up path for imbalance, which will be 1 of 4
cases:
 1. node‟s left-left grandchild is too tall

 2. node‟s left-right grandchild is too tall

 3. node‟s right-left grandchild is too tall

 4. node‟s right-right grandchild is too tall

 Only one case occurs because tree was balanced before
insert

 After the appropriate single or double rotation, the
smallest-unbalanced subtree has the same height as
before the insertion
 So all ancestors are now balanced

28

Now efficiency

Have argued rotations restore AVL property but do

they produce an efficient data structure?

 Worst-case complexity of find:

 Worst-case time to do a rotation?

 Worst-case complexity of insert:

29

O(logn)

O(1)

O(logn)

Pros and Cons of AVL Trees

30

Arguments for AVL trees:

1. All operations logarithmic worst-case because trees are

always balanced.

2. The height balancing adds no more than a constant factor to
the speed of insert (and delete)

Arguments against AVL trees:

1. Difficult to program & debug

2. More space for height field

3. Asymptotically faster but rebalancing takes a little time

4. Most large searches are done in database-like systems on

disk and use other structures (e.g., B-trees, our next data

structure)

What we’re missing

31

 Splay Trees

 BST

 No balance condition (don‟t need to store height)

 No O(logn) guarantee; can be O(n)

 Instead, amortized guarantee: O(logn) over the course of

a large number of operations

 Neat caching behavior: when you access a node (find,

insert), you „splay‟ it to the top: it becomes the new root

