
CSE332: Data Abstractions

Lecture 6: Dictionaries; Binary Search Trees

Tyler Robison

Summer 2010

1

Where we are

ADTs so far:

1. Stack: push, pop, isEmpty

2. Queue: enqueue, dequeue, isEmpty

3. Priority queue: insert, deleteMin

Next:

4. Dictionary: associate keys with values

 probably the most common, way more than priority queue

 Ex: Binary Search Tree, HashMap

2

LIFO

FIFO

Min

The Dictionary (a.k.a. Map, a.k.a.

Associative Array) ADT

 Data:

 set of (key, value) pairs

 keys must be comparable (< or > or =)

 Primary Operations:

 insert(key,val): places (key,val) in map

 If key already used, overwrites existing entry

 find(key): returns val associated with key

 delete(key)

3

Comparison: Set ADT vs. Dictionary ADT

The Set ADT is like a Dictionary without any values

 A key is present or not (no repeats)

For find, insert, delete, there is little difference

 In dictionary, values are “just along for the ride”

 So same data-structure ideas work for dictionaries and sets

 Java HashSet implemented using a HashMap, for instance

Set ADT may have other important operations
 union, intersection, is_subset

 notice these are operators on 2 sets

4

Dictionary data structures

Will spend the next week or two looking at three important
dictionary data structures:

1. AVL trees

 Binary search trees with guaranteed balancing

2. B-Trees

 Also always balanced, but different and shallower

 B!=Binary; B-Trees generally have large branching factor

3. Hashtables

 Not tree-like at all

Skipping: Other balanced trees (red-black, splay)

5

A Modest Few Uses

Any time you want to store information according to some key

and be able to retrieve it efficiently

 Lots of programs do that!

 Networks: router tables

 Compilers: symbol tables

 Databases, phone directories, associating username with

profile, …

6

Some possible data structures

Worst case for dictionary with n key/value pairs

insert find delete

 Unsorted linked-list

 Unsorted array

 Sorted linked list

 Sorted array

We‟ll see a Binary Search Tree (BST) probably does better…

But not in the worst case unless we keep it balanced

*Correction: Given our policy of „no duplicates‟, we would need to do O(n) work to
check for a key‟s existence before insertion

7

O(1)* O(n) O(n)

O(1)* O(n) O(n)

O(n) O(n) O(n)

O(n) O(log n) O(n)

Some tree terms (review… again)

 A tree can be balanced or not

 A balanced tree with n nodes has a height of O(log n)

 Different tree data structures have different “balance

conditions” to achieve this

8

A

B

D E

C

F G

Balanced:

n=7

h=2

B

C

D

E

F
G

A Unbalanced:

n=7

h=6

Binary Trees

 Binary tree is empty or
 a node (with data), and with

 a left subtree (maybe empty)

 a right subtree (maybe empty)

 Representation:

A

B

D E

C

F

HG

JI

Data

right

pointer

left

pointer

• For a dictionary, data will include key and a value

Ditched this representation for binary heaps,
but it’s useful for BST

9

Binary Trees: Some Numbers

Recall: height of a tree = longest path from root to leaf

(counting # of edges)

Operations tend to be a function of height

For binary tree of height h:

 max # of leaves:

 max # of nodes:

 min # of leaves:

 min # of nodes:
For n nodes, we cannot do better than O(log n) height,

and we want to avoid O(n) height

2h

2(h+1) – 1

1

h+1

10

Calculating height

How do we find the height of a tree with root r?

int treeHeight(Node root) {

???

}

11

Calculating height

How do we find the height of a tree with root r?

int treeHeight(Node root) {

if(root == null)

return -1;

return 1 + max(treeHeight(root.left),

treeHeight(root.right));

}

Running time for tree with n nodes: O(n) – single pass over tree

Note: non-recursive is painful – need your own stack of pending nodes;

much easier to use recursion‟s call stack

12

Tree Traversals

A traversal is an order for visiting all the nodes of

a tree

 Pre-order: root, left subtree, right subtree

+*245

 In-order: left subtree, root, right subtree

2*4+5

 Post-order: left subtree, right subtree, root

24*5+

+

*

2 4

5

Expression

tree

13

More on traversals

void inOrdertraversal(Node t){

if(t != null) {

traverse(t.left);

process(t.element);

traverse(t.right);

}

}

Sometimes order doesn‟t matter

• Example: sum all elements

Sometimes order matters

• Example: print tree with parent above

indented children (pre-order)

• Example: print BST values in order (in-

order)

A

B

D

E

C

F

G

A

B

D E

C

F G

14

Binary Search Tree

 Structural property (“binary”)

 each node has 2 children

 Order property

 all keys in left subtree smaller

than node‟s key

 all keys in right subtree larger

than node‟s key

 result: easy to find any given key

4

121062

115

8

14

13

7 9

15

Are these BSTs?

3

1171

84

5

4

181062

115

8

20

21

7

15

16

Are these BSTs?

3

1171

84

5

4

181062

115

8

20

21

7

15

17

Yep Nope

Find in BST, Recursive

2092

155

12

307 1710

Data find(Key key, Node root){

if(root == null)

return null;

if(key < root.key)

return find(key,root.left);

if(key > root.key)

return find(key,root.right);

return root.data;

}

18

Run-time (for worst-case)?

Find in BST, Iterative

2092

155

12

307 1710

Data find(Key key, Node root){

while(root != null

&& root.key != key) {

if(key < root.key)

root = root.left;

else if(key > root.key)

root = root.right;

}

if(root == null)

return null;

return root.data;

}

19

For iteratively calculating height & doing traversals,

we needed a stack. Why do we not need one here?

Other “finding operations”

 Find minimum node

 Find maximum node

 Find predecessor

 Find successor
2092

155

12

307 1710

20

Insert in BST

2092

155

12

307 17

insert(13)

insert(8)

insert(31)

10

8 31

13

21

How do we insert k elements to

get a completely unbalanced

tree?

How do we insert k elements to

get a balanced tree?

Lazy Deletion

A general technique for making delete as fast as find:

 Instead of actually removing the item just mark it deleted

“Uh, I‟ll do it later”

Plusses:

 Simpler

 Can do removals later in batches

 If re-added soon thereafter, just unmark the deletion

Minuses:

 Extra space for the “is-it-deleted” flag

 Data structure full of deleted nodes wastes space

 Can hurt run-times of other operations

We‟ll see lazy deletion in use later

10 12 24 30 41 42 44 45 50

22

(Non-lazy) Deletion in BST

2092

155

12

307 17

Why might deletion be harder than insertion?

10

23

Deletion

 Removing an item disrupts the tree structure

 Basic idea: find the node to be removed, then
“fix” the tree so that it is still a binary search tree

 Three cases:
 node has no children (leaf)

 node has one child

 node has two children

24

Deletion – The Leaf Case

2092

155

12

307 17

delete(17)

10

25

Just remove it

Deletion – The One Child Case

2092

155

12

307 10

delete(15)

26

Replace it with its child

Deletion – The Two Child Case

3092

205

12

7

What can we replace 5 with?

10

delete(5)

27

Deletion – The Two Child Case

Idea: Replace the deleted node with a value guaranteed to be

between the two child subtrees

Options:

 successor from right subtree: findMin(node.right)

 predecessor from left subtree: findMax(node.left)

 These are the easy cases of predecessor/successor

Now delete the original node containing successor or predecessor

 Leaf or one child case – easy cases of delete!

28

BuildTree for BST

 BuildHeap equivalent for trees

 Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST

 In order (and reverse order) not going to work well

 Try a different ordering

 median first, then left median, right median, etc.

 5, 3, 7, 2, 1, 4, 8, 6, 9

 What tree does that give us?

 What big-O runtime?

842

73

5

9

6

1

O(n log n), definitely better

29

Unbalanced BST

 Balancing a tree at build time is insufficient, as sequences

of operations can eventually transform that carefully

balanced tree into the dreaded list

 At that point, everything is

O(n)

 find

 insert

 delete

1

2

3

30

Balanced BST

Observation

 BST: the shallower the better!

 For a BST with n nodes inserted in arbitrary order
 Average height is O(log n) – see text for proof

 Worst case height is O(n)

 Simple cases such as inserting in key order lead to

the worst-case scenario

Solution: Require a Balance Condition that

1. ensures depth is always O(log n) – strong enough!

2. is easy to maintain – not too strong!

31

Potential Balance Conditions

1. Left and right subtrees of the

root have equal number of

nodes

2. Left and right subtrees of the

root have equal height

Too weak!

Height mismatch example:

Too weak!

Double chain example:

32

Potential Balance Conditions

3. Left and right subtrees of every node

have equal number of nodes

4. Left and right subtrees of every node

have equal height

Too strong!

Only perfect trees (2n – 1 nodes)

Too strong!

Only perfect trees (2n – 1 nodes)

33

The AVL Tree Balance Condition

Left and right subtrees of every node

have heights differing by at most 1

Definition:

balance(node) = height(node.left) – height(node.right)

AVL property: for every node x, –1 balance(x) 1
That is, heights differ by at most 1

 Ensures small depth
 Will prove this by showing that an AVL tree of height

h must have a number of nodes exponential in h

 Easy (well, efficient) to maintain
 Using single and double rotations

 Perhaps not so easy to code….

34

Have fun on project 2!

