CSE332: Data Abstractions

Lecture 6: Dictionaries; Binary Search Trees

Tyler Robison
Summer 2010

Where we are

ADTs so far:

I. Stack: push, pop, isEmpty LIFO
2. Queue: enqueue, dequeue, isEmpty FIFO
3. Priority queue: insert,deleteMin Min
Next:

4. Dictionary: associate keys with values

probably the most common, way more than priority queue
Ex: Binary Search Tree, HashMap

The Dictionary (a.k.a. Map, a.k.a.
Associative Array) ADT

» Data:
set of (key, value) pairs
keys must be comparable (< or > or =)

» Primary Operations:
insert (key,val) : places (key,val) in map
If key already used, overwrites existing entry

find (key) : returns val associated with key
delete (key)

Comparison: Set ADT vs. Dictionary ADT

The Set ADT is like a Dictionary without any values
A key is present or not (no repeats)

For £ind, insert,delete, there is little difference

In dictionary, values are “just along for the ride”

So same data-structure ideas work for dictionaries and sets
Java HashSet implemented using a HashMap, for instance

Set ADT may have other important operations
union,intersection,is subset
notice these are operators on 2 sets

Dictionary data structures

Will spend the next week or two looking at three important
dictionary data structures:

. AVL trees

Binary search trees with guaranteed balancing

2. B-Trees
Also always balanced, but different and shallower
B!=Binary; B-Trees generally have large branching factor

3. Hashtables
Not tree-like at all

Skipping: Other balanced trees (red-black, splay)

A Modest Few Uses

Any time you want to store information according to some key
and be able to retrieve it efficiently

Lots of programs do that!

» Networks: router tables
» Compilers: symbol tables

» Databases, phone directories, associating username with
profile, ...

Some possible data structures

Worst case for dictionary with n key/value pairs

insert find delete
» Unsorted linked-list O(1)* O(n) O(n)
» Unsorted array O(1)* O(n) O(n)
» Sorted linked list o(n) o(n) O(n)
» Sorted array o(n) O(logn) O(n)

We’'ll see a Binary Search Tree (BST) probably does better...
But not in the worst case unless we keep it balanced

*Correction: Given our policy of ‘no duplicates’, we would need to do O(n) work to
check for a key’s existence before insertion

Some tree terms (review... again)

» A tree can be balanced or not
A balanced tree with n nodes has a height of O(1og n)

Different tree data structures have different “‘balance
conditions” to achieve this

Balanced: Unbalanced:

n=/
h=2 e

Binary Trees

» Binary tree is empty or

a node (with data), and with
a left subtree (maybe empty)
a right subtree (maybe empty)

» Representation:

Data

left | right
pointer | pointer

* For a dictionary, data will include key and a value

Ditched this representation for binary heaps,
but 1t’s useful for BST

Binary Trees: Some Numbers

Recall: height of a tree = longest path from root to leaf
(counting # of edges)

Operations tend to be a function of height
For binary tree of height h:

max # of leaves: 2h
max # of nodes: 20+ 1
min # of leaves: 1

min # of nodes: h+1

10

Calculating height

How do we find the height of a tree with root r?
int treeHeight (Node root) {

2?22

11

Calculating height

How do we find the height of a tree with root r?

int treeHeight (Node root) {
(root ==)
_1;
1 + max(treeHeight (root.left),
treeHeight (root.right)) ;

Running time for tree with n nodes: O(n) — single pass over tree

Note: non-recursive is painful — need your own stack of pending nodes;
much easier to use recursion’s call stack

12

Tree Traversals

A traversal is an order for visiting all the nodes of Expression
a tree tree

» Pre-order: root, left subtree, right subtree

+¥245 (x) (5)

» In-order: left subtree, root, right subtree

2¥4+5 D@

» Post-order: left subtree, right subtree, root
245+

13

More on traversals

void inOrdertraversal (Node t) {
(t '=) |
traverse (t.left) ;
process (t.element) ;
traverse (t.right) ;

}
}

Sometimes order doesn’t matter
* Example: sum all elements
Sometimes order matters
* Example: print tree with parent above
indented children (pre-order)
* Example: print BST values in order (in-
order)

14

m O

m'l'l

Binary Search Tree

» Structural property (“binary”)

each node has < 2 children

» Order property

all keys in left subtree smaller
than node’s key

all keys in right subtree larger
than node’s key

result: easy to find any given key

15

Are these BSTs?

16

Are these BSTs?

17

Find in BST, Recursive

@ Data find (Key key, Node root) {
(root ==)

@ @ (key < roottkey)

find (key, root.left) ;
(key > root.key)

(2) (9 00 find (key, root.right) ;
root.data;
(DWW @ Q

Run-time (for worst-case)?

18

Find in BST, Iterative

@ Data find (Key key, Node root) {
(root !'=
&& root.key !'= key) {
@ @ (key < root.key)

root = root.left;
(key > root.key)

9 @ @ root = root.right;
}

(root ==)

DWW QI "

root.data;
}

For iteratively calculating height & doing traversals,
we needed a stack. Why do we not need one here?

19

Other “finding operations”

» Find minimum node

Find maximum node

v

v

Find predecessor

Find successor

v

20

Insert in BST

21

insert (13)
insert (8)
insert (31)

How do we insert k elements to
get a completely unbalanced
tree?

How do we insert k elements to
get a balanced tree?

Lazy Deletion

10

12

24

30

41

42

44

45

50

v

X

v

v

v

v

X

A general technique for making delete as fast as £ind:
Instead of actually removing the item just mark it deleted

“Uh, I'll do it later”

Plusses:
Simpler
Can do removals later in batches
If re-added soon thereafter, just unmark the deletion

Minuses:
Extra space for the “is-it-deleted” flag
Data structure full of deleted nodes wastes space
Can hurt run-times of other operations

We’'ll see lazy deletion in use later

22

(Non-lazy) Deletion in BST

23

Deletion

» Removing an item disrupts the tree structure

» Basic idea: the node to be removed, then
“fix” the tree so that it is still a binary search tree

» Three cases:
node has no children (leaf)
node has one child
node has two children

24

Deletion — The Leaf Case

delete (17)

Just remove it

25

Deletion — The One Child Case

delete (15)

Replace it with its child

26

Deletion — The Two Child Case

delete (5)

What can we replace 5 with!?

27

Deletion — The Two Child Case

|dea: Replace the deleted node with a value guaranteed to be
between the two child subtrees

Options:
» successor from right subtree: £indMin (node.right)
» predecessor from left subtree: findMax (node.left)

These are the easy cases of predecessor/successor

Now delete the original node containing successor or predecessor

» Leaf or one child case — easy cases of delete!

28

BuildTree for BST

BuildHeap equivalent for trees

v Vv

Insert keys 1,2, 3,4,5,6,7,8,9 into an empty BST

v

In order (and reverse order) not going to work well

v

Try a different ordering

median first, then left median, right median, etc.
53,7,2,1,4,8,6,9

What tree does that give us!?

What big-O runtime!?

29

Unbalanced BST

» Balancing a tree at build time is insufficient, as sequences
of operations can eventually transform that carefully
balanced tree into the dreaded list

» At that point, everything is
O(n) ®
find
insert
delete

30

Balanced BST

Observation
» BST: the shallower the better!

» For a BST with n nodes inserted in arbitrary order
Average height is O(1og n) — see text for proof
Worst case height is O(n)

» Simple cases such as inserting in key order lead to
the worst-case scenario

Solution: Require a that

I, ensures depth is always O(log n) — strong enough!
2. is easy to maintain — not too strong!

31

Potential Balance Conditions

I, Left and right subtrees of the
root have equal number of

nodes
Too weak! é

Height mismatch example:

2. Left and right subtrees of the %
root have equal height
Too weak!
Double chain example:

32

Potential Balance Conditions

3. Left and right subtrees of every node
have equal number of nodes

Too strong!
Only perfect trees (2" — | nodes)

&

4. Left and right subtrees of every node
have equal height

Too strong!
Only perfect trees (2" — | nodes)

&

33

The AVL Tree Balance Condition

Left and right subtrees of every node
have heights differing by at most |

Definition:
balance(node) = height(node.left) — height(node.right)

AVL property:
That is, heights differ by at most |

» Ensures small depth

Will prove this by showing that an AVL tree of height
h must have a number of nodes exponential in h

» Easy (well, efficient) to maintain
Using single and double rotations

Perhaps not so easy to code.... Have fun on project 21

34

