
CSE332: Data Abstractions

Lecture 6: Dictionaries; Binary Search Trees

Tyler Robison

Summer 2010

1

Where we are

ADTs so far:

1. Stack: push, pop, isEmpty

2. Queue: enqueue, dequeue, isEmpty

3. Priority queue: insert, deleteMin

Next:

4. Dictionary: associate keys with values

 probably the most common, way more than priority queue

 Ex: Binary Search Tree, HashMap

2

LIFO

FIFO

Min

The Dictionary (a.k.a. Map, a.k.a.

Associative Array) ADT

 Data:

 set of (key, value) pairs

 keys must be comparable (< or > or =)

 Primary Operations:

 insert(key,val): places (key,val) in map

 If key already used, overwrites existing entry

 find(key): returns val associated with key

 delete(key)

3

Comparison: Set ADT vs. Dictionary ADT

The Set ADT is like a Dictionary without any values

 A key is present or not (no repeats)

For find, insert, delete, there is little difference

 In dictionary, values are “just along for the ride”

 So same data-structure ideas work for dictionaries and sets

 Java HashSet implemented using a HashMap, for instance

Set ADT may have other important operations
 union, intersection, is_subset

 notice these are operators on 2 sets

4

Dictionary data structures

Will spend the next week or two looking at three important
dictionary data structures:

1. AVL trees

 Binary search trees with guaranteed balancing

2. B-Trees

 Also always balanced, but different and shallower

 B!=Binary; B-Trees generally have large branching factor

3. Hashtables

 Not tree-like at all

Skipping: Other balanced trees (red-black, splay)

5

A Modest Few Uses

Any time you want to store information according to some key

and be able to retrieve it efficiently

 Lots of programs do that!

 Networks: router tables

 Compilers: symbol tables

 Databases, phone directories, associating username with

profile, …

6

Some possible data structures

Worst case for dictionary with n key/value pairs

insert find delete

 Unsorted linked-list

 Unsorted array

 Sorted linked list

 Sorted array

We‟ll see a Binary Search Tree (BST) probably does better…

But not in the worst case unless we keep it balanced

*Correction: Given our policy of „no duplicates‟, we would need to do O(n) work to
check for a key‟s existence before insertion

7

O(1)* O(n) O(n)

O(1)* O(n) O(n)

O(n) O(n) O(n)

O(n) O(log n) O(n)

Some tree terms (review… again)

 A tree can be balanced or not

 A balanced tree with n nodes has a height of O(log n)

 Different tree data structures have different “balance

conditions” to achieve this

8

A

B

D E

C

F G

Balanced:

n=7

h=2



B

C

D

E

F
G

A Unbalanced:

n=7

h=6



Binary Trees

 Binary tree is empty or
 a node (with data), and with

 a left subtree (maybe empty)

 a right subtree (maybe empty)

 Representation:

A

B

D E

C

F

HG

JI

Data

right

pointer

left

pointer

• For a dictionary, data will include key and a value

Ditched this representation for binary heaps,
but it’s useful for BST

9

Binary Trees: Some Numbers

Recall: height of a tree = longest path from root to leaf

(counting # of edges)

Operations tend to be a function of height

For binary tree of height h:

 max # of leaves:

 max # of nodes:

 min # of leaves:

 min # of nodes:
For n nodes, we cannot do better than O(log n) height,

and we want to avoid O(n) height

2h

2(h+1) – 1

1

h+1

10

Calculating height

How do we find the height of a tree with root r?

int treeHeight(Node root) {

???

}

11

Calculating height

How do we find the height of a tree with root r?

int treeHeight(Node root) {

if(root == null)

return -1;

return 1 + max(treeHeight(root.left),

treeHeight(root.right));

}

Running time for tree with n nodes: O(n) – single pass over tree

Note: non-recursive is painful – need your own stack of pending nodes;

much easier to use recursion‟s call stack

12

Tree Traversals

A traversal is an order for visiting all the nodes of

a tree

 Pre-order: root, left subtree, right subtree

+*245

 In-order: left subtree, root, right subtree

2*4+5

 Post-order: left subtree, right subtree, root

24*5+

+

*

2 4

5

Expression

tree

13

More on traversals

void inOrdertraversal(Node t){

if(t != null) {

traverse(t.left);

process(t.element);

traverse(t.right);

}

}

Sometimes order doesn‟t matter

• Example: sum all elements

Sometimes order matters

• Example: print tree with parent above

indented children (pre-order)

• Example: print BST values in order (in-

order)

A

B

D

E

C

F

G

A

B

D E

C

F G

14

Binary Search Tree

 Structural property (“binary”)

 each node has 2 children

 Order property

 all keys in left subtree smaller

than node‟s key

 all keys in right subtree larger

than node‟s key

 result: easy to find any given key

4

121062

115

8

14

13

7 9

15

Are these BSTs?

3

1171

84

5

4

181062

115

8

20

21

7

15

16

Are these BSTs?

3

1171

84

5

4

181062

115

8

20

21

7

15

17

Yep Nope

Find in BST, Recursive

2092

155

12

307 1710

Data find(Key key, Node root){

if(root == null)

return null;

if(key < root.key)

return find(key,root.left);

if(key > root.key)

return find(key,root.right);

return root.data;

}

18

Run-time (for worst-case)?

Find in BST, Iterative

2092

155

12

307 1710

Data find(Key key, Node root){

while(root != null

&& root.key != key) {

if(key < root.key)

root = root.left;

else if(key > root.key)

root = root.right;

}

if(root == null)

return null;

return root.data;

}

19

For iteratively calculating height & doing traversals,

we needed a stack. Why do we not need one here?

Other “finding operations”

 Find minimum node

 Find maximum node

 Find predecessor

 Find successor
2092

155

12

307 1710

20

Insert in BST

2092

155

12

307 17

insert(13)

insert(8)

insert(31)

10

8 31

13

21

How do we insert k elements to

get a completely unbalanced

tree?

How do we insert k elements to

get a balanced tree?

Lazy Deletion

A general technique for making delete as fast as find:

 Instead of actually removing the item just mark it deleted

“Uh, I‟ll do it later”

Plusses:

 Simpler

 Can do removals later in batches

 If re-added soon thereafter, just unmark the deletion

Minuses:

 Extra space for the “is-it-deleted” flag

 Data structure full of deleted nodes wastes space

 Can hurt run-times of other operations

We‟ll see lazy deletion in use later

10 12 24 30 41 42 44 45 50

        

22

(Non-lazy) Deletion in BST

2092

155

12

307 17

Why might deletion be harder than insertion?

10

23

Deletion

 Removing an item disrupts the tree structure

 Basic idea: find the node to be removed, then
“fix” the tree so that it is still a binary search tree

 Three cases:
 node has no children (leaf)

 node has one child

 node has two children

24

Deletion – The Leaf Case

2092

155

12

307 17

delete(17)

10

25

Just remove it

Deletion – The One Child Case

2092

155

12

307 10

delete(15)

26

Replace it with its child

Deletion – The Two Child Case

3092

205

12

7

What can we replace 5 with?

10

delete(5)

27

Deletion – The Two Child Case

Idea: Replace the deleted node with a value guaranteed to be

between the two child subtrees

Options:

 successor from right subtree: findMin(node.right)

 predecessor from left subtree: findMax(node.left)

 These are the easy cases of predecessor/successor

Now delete the original node containing successor or predecessor

 Leaf or one child case – easy cases of delete!

28

BuildTree for BST

 BuildHeap equivalent for trees

 Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST

 In order (and reverse order) not going to work well

 Try a different ordering

 median first, then left median, right median, etc.

 5, 3, 7, 2, 1, 4, 8, 6, 9

 What tree does that give us?

 What big-O runtime?

842

73

5

9

6

1

O(n log n), definitely better

29

Unbalanced BST

 Balancing a tree at build time is insufficient, as sequences

of operations can eventually transform that carefully

balanced tree into the dreaded list

 At that point, everything is

O(n) 

 find

 insert

 delete

1

2

3

30

Balanced BST

Observation

 BST: the shallower the better!

 For a BST with n nodes inserted in arbitrary order
 Average height is O(log n) – see text for proof

 Worst case height is O(n)

 Simple cases such as inserting in key order lead to

the worst-case scenario

Solution: Require a Balance Condition that

1. ensures depth is always O(log n) – strong enough!

2. is easy to maintain – not too strong!

31

Potential Balance Conditions

1. Left and right subtrees of the

root have equal number of

nodes

2. Left and right subtrees of the

root have equal height

Too weak!

Height mismatch example:

Too weak!

Double chain example:

32

Potential Balance Conditions

3. Left and right subtrees of every node

have equal number of nodes

4. Left and right subtrees of every node

have equal height

Too strong!

Only perfect trees (2n – 1 nodes)

Too strong!

Only perfect trees (2n – 1 nodes)

33

The AVL Tree Balance Condition

Left and right subtrees of every node

have heights differing by at most 1

Definition:

balance(node) = height(node.left) – height(node.right)

AVL property: for every node x, –1 balance(x) 1
That is, heights differ by at most 1

 Ensures small depth
 Will prove this by showing that an AVL tree of height

h must have a number of nodes exponential in h

 Easy (well, efficient) to maintain
 Using single and double rotations

 Perhaps not so easy to code….

34

Have fun on project 2!

