

1

CSE332: Data Abstractions

Lecture 6: Dictionaries; Binary Search Trees

Tyler Robison

Summer 2010

Where we are

ADTs so far:

- I. Stack: push, pop, isEmpty
- 2. Queue: enqueue, dequeue, isEmpty
- 3. Priority queue: insert, deleteMin

Next:

- 4. Dictionary: associate keys with values
 - probably the most common, way more than priority queue

LIFO

FIFO

Min

Ex: Binary Search Tree, HashMap

2

The Dictionary (a.k.a. Map, a.k.a. Associative Array) ADT

Data:

- set of (key, value) pairs
- keys must be comparable (< or > or =)
- Primary Operations:
 - insert(key,val): places (key,val) in map
 - If key already used, overwrites existing entry
 - find(key): returns val associated with key
 - delete(key)

Comparison: Set ADT vs. Dictionary ADT

The Set ADT is like a Dictionary without any values

• A key is present or not (no repeats)

For find, insert, delete, there is little difference

- In dictionary, values are "just along for the ride"
- So same data-structure ideas work for dictionaries and sets
 - Java HashSet implemented using a HashMap, for instance

Set ADT may have other important operations

- union, intersection, is_subset
- notice these are operators on 2 sets

Dictionary data structures

- Will spend the next week or two looking at three important dictionary data structures:
- I. AVL trees
 - Binary search trees with guaranteed balancing
- 2. B-Trees
 - Also always balanced, but different and shallower
 - B!=Binary; B-Trees generally have large branching factor
- 3. Hashtables
 - Not tree-like at all

Skipping: Other balanced trees (red-black, splay)

A Modest Few Uses

Any time you want to store information according to some key and be able to retrieve it efficiently

- Lots of programs do that!
- Networks: router tables
- Compilers: symbol tables
- Databases, phone directories, associating username with profile, ...

Some possible data structures

Worst case for dictionary with n key/value pairs

	insert	find	delete
Unsorted linked-list	<i>O</i> (1)*	O(n)	O (n)
Unsorted array	<i>O</i> (1)*	O (n)	O (<i>n</i>)
Sorted linked list	O(n)	O(n)	O(n)
Sorted array	O(n)	$O(\log n)$	O(n)

We'll see a Binary Search Tree (BST) probably does better...

But not in the worst case unless we keep it balanced

*Correction: Given our policy of 'no duplicates', we would need to do O(n) work to check for a key's existence before insertion

Some tree terms (review... again)

- A tree can be balanced or not
 - A balanced tree with n nodes has a height of O(log n)
 - Different tree data structures have different "balance conditions" to achieve this

Binary Trees

Binary tree is empty or

- a node (with data), and with
 - a left subtree (maybe empty)
 - a right subtree (maybe empty)

Representation:

 For a dictionary, data will include key and a value
 Ditched this representation for binary heaps, but it's useful for BST

Binary Trees: Some Numbers

Recall: height of a tree = longest path from root to leaf (counting # of edges)

Operations tend to be a function of height For binary tree of height *h*:

- max # of leaves: 2^h
- $\bullet \max \# \text{ of nodes:} \qquad 2^{(h+1)} 1$
- min # of leaves:
- min # of nodes: h+1 For n nodes, we cannot do better than O(log n) height, and we want to avoid O(n) height

1

Calculating height

How do we find the height of a tree with root r?


```
Calculating height
```

How do we find the height of a tree with root \mathbf{r} ?

Running time for tree with n nodes: O(n) – single pass over tree

Note: non-recursive is painful – need your own stack of pending nodes; much easier to use recursion's call stack A *traversal* is an order for visiting all the nodes of a tree

- Pre-order: root, left subtree, right subtree +*245
- In-order: left subtree, root, right subtree
 2*4+5

Post-order: left subtree, right subtree, root
 24*5+

More on traversals

```
void inOrdertraversal(Node t) {
    if(t != null) {
        traverse(t.left);
        process(t.element);
        traverse(t.right);
    }
}
```

Sometimes order doesn't matter

• Example: sum all elements

Sometimes order matters

- Example: print tree with parent above indented children (pre-order)
- Example: print BST values in order (inorder)

G

Binary Search Tree

- Structural property ("binary")
 - each node has ≤ 2 children
- Order property
 - all keys in left subtree smaller than node's key
 - all keys in right subtree larger than node's key
 - result: easy to find any given key

Are these BSTs?

Are these BSTs?

Find in BST, Recursive

Data find(Key key, Node root) {
 if(root == null)
 return null;
 if(key < root.key)
 return find(key,root.left);
 if(key > root.key)
 return find(key,root.right);
 return root.data;
}

Run-time (for worst-case)?

Find in BST, Iterative

For iteratively calculating height & doing traversals, we needed a stack. Why do we not need one here?

Other "finding operations"

- Find *minimum* node
- Find maximum node
- Find predecessor
- Find successor

Insert in BST

insert(13)
insert(8)
insert(31)

How do we insert k elements to get a completely unbalanced tree?

How do we insert k elements to get a balanced tree?

Lazy Deletion

10	12	24	30	41	42	44	45	50	
✓	×	√	√	✓	✓	×	√	✓	

A general technique for making **delete** as fast as **find**:

Instead of actually removing the item just mark it deleted "Uh, I'll do it later"

Plusses:

- Simpler
- Can do removals later in batches
- If re-added soon thereafter, just unmark the deletion

Minuses:

- Extra space for the "is-it-deleted" flag
- Data structure full of deleted nodes wastes space
- Can hurt run-times of other operations

We'll see lazy deletion in use later

(Non-lazy) Deletion in BST

Why might deletion be harder than insertion?

Deletion

• Removing an item disrupts the tree structure

Basic idea: find the node to be removed, then "fix" the tree so that it is still a binary search tree

Three cases:

- node has no children (leaf)
- node has one child
- node has two children

Deletion – The Leaf Case

Just remove it

Deletion – The One Child Case

Replace it with its child

Deletion – The Two Child Case

What can we replace 5 with?

Deletion – The Two Child Case

Idea: Replace the deleted node with a value guaranteed to be between the two child subtrees

Options:

- successor from right subtree: findMin(node.right)
- > predecessor from left subtree: findMax(node.left)
 - These are the easy cases of predecessor/successor

Now delete the original node containing successor or predecessor

Leaf or one child case – easy cases of delete!

BuildTree for BST

- BuildHeap equivalent for trees
- Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST
- In order (and reverse order) not going to work well
- Try a different ordering
 - > median first, then left median, right median, etc.
 - **5**, 3, 7, 2, 1, 4, 8, 6, 9
 - What tree does that give us?
 - What big-O runtime?

O(n log n), definitely better

Unbalanced BST

- Balancing a tree at build time is insufficient, as sequences of operations can eventually transform that carefully balanced tree into the dreaded list
- At that point, everything is
 O(n) ☺
 - find
 - insert
 - > delete

Balanced BST

Observation

- BST: the shallower the better!
- For a BST with *n* nodes inserted in arbitrary order
 - Average height is O(log n) see text for proof
 - Worst case height is O(n)
- Simple cases such as inserting in key order lead to the worst-case scenario

Solution: Require a Balance Condition that

- 1. ensures depth is always $O(\log n)$ strong enough!
- 2. is easy to maintain not too strong!

Potential Balance Conditions

 Left and right subtrees of the root have equal number of nodes

> Too weak! Height mismatch example:

2. Left and right subtrees of the *root* have equal *height*

Too weak! Double chain example:

Potential Balance Conditions

 Left and right subtrees of every node have equal number of nodes

> Too strong! Only perfect trees (2ⁿ – 1 nodes)

4. Left and right subtrees of every node have equal *height*

Too strong! Only perfect trees (2ⁿ – 1 nodes)

The AVL Tree Balance Condition

Left and right subtrees of every node have heights **differing by at most I**

Definition:

balance(node) = height(node.left) - height(node.right)

AVL property: for every node x, $-I \leq balance(x) \leq I$

That is, heights differ by at most I

- Ensures small depth
 - Will prove this by showing that an AVL tree of height h must have a number of nodes exponential in h
- Easy (well, efficient) to maintain
 - Using single and double rotations
 - Perhaps not so easy to code....

Have fun on project 2!