
CSE332: Data Abstractions

Lecture 5: Binary Heaps, Continued

Tyler Robison

Summer 2010

1

Review

2

 Priority Queue ADT: insert comparable object, deleteMin

 Binary heap data structure: Complete binary tree where each
node has a lesser priority than its parent (greater value)

 O(height-of-tree)=O(log n) insert and deleteMin operations
 insert: put at new last position in tree and percolate-up

 deleteMin: remove root, put last element at root and percolate-
down

 But: tracking the “last position” is painful and we can do better

insert deleteMin

6 2

15 23

12 18

45 3 7 996040

8020

10

700 50

85

Clever Trick: Array Representation of

Complete Binary Trees

3

GED

CB

A

J KH I

F

L

From node i:

left child: i*2

right child: i*2+1

parent: i/2

(wasting index 0 is

convenient)

7

1

2 3

4 5 6

98 10 11 12

A B C D E F G H I J K L

0 1 2 3 4 5 6 7 8 9 10 11 12 13

implicit (array) implementation:

We can use index 0 to store other info, such as the size

12

Judging the array implementation

4

Plusses:

 Non-data space: just index 0 and unused space on right
 In conventional tree representation, one edge per node (except

for root), so n-1 wasted space (like linked lists)

 Array would waste more space if tree were not complete

 For reasons you learn in CSE351 / CSE378, multiplying
and dividing by 2 is very fast

 size is the index of the last node

Minuses:

 Same might-be-empty or might-get-full problems we saw
with array stacks and queues (resize by doubling as
necessary)

Plusses outweigh minuses: “this is how people do it”

Pseudocode: insert

5

Note this pseudocode inserts ints,

not useful data with priorities

void insert(int val) {

if(size==arr.length-1)

resize();

size++;

i=percolateUp(size,val);

arr[i] = val;

}

int percolateUp(int hole,
int val) {

while(hole > 1 &&
val < arr[hole/2])

arr[hole] = arr[hole/2];
hole = hole / 2;

}
return hole;

}

996040

8020

10

700 50

85

10 20 80 40 60 85 99 700 50

0 1 2 3 4 5 6 7 8 9 10 11 12 13

O(logn): Or is it…

Pseudocode: deleteMin

6

Note this pseudocode deletes ints,
not useful data with priorities

int deleteMin() {

if(isEmpty()) throw…

ans = arr[1];

hole = percolateDown

(1,arr[size]);

arr[hole] = arr[size];

size--;

return ans;

}

int percolateDown(int hole,
int val) {

while(2*hole <= size) {
left = 2*hole;
right = left + 1;
if(arr[left] < arr[right]

|| right > size)
target = left;

else
target = right;

if(arr[target] < val) {
arr[hole] = arr[target];
hole = target;

} else
break;

}
return hole;
}

996040

8020

10

700 50

85

10 20 80 40 60 85 99 700 50

0 1 2 3 4 5 6 7 8 9 10 11 12 13

O(logn)

Example

7

1. insert: 16, 32, 4, 69, 105, 43, 2

2. deleteMin

0 1 2 3 4 5 6 7

Example: After insertion

8

1. insert: 16, 32, 4, 69, 105, 43, 2

2. deleteMin

2 32 4 69 105 43 16

0 1 2 3 4 5 6 7

1610569

432

2

43

Example: After deletion

9

1. insert: 16, 32, 4, 69, 105, 43, 2

2. deleteMin

4 32 16 69 105 43

0 1 2 3 4 5 6 7

10569

1632

4

43

Other operations

10

 decreaseKey: given pointer to object in priority queue

(e.g., its array index), lower its priority value by p

 Change priority and percolate up

 increaseKey: given pointer to object in priority queue

(e.g., its array index), raise its priority value by p

 Change priority and percolate down

 remove: given pointer to object, take it out of the queue

 decreaseKey: set to -, then deleteMin

Running time for all these operations?

O(logn)

O(logn)

O(logn)

Insert run-time: Take 2

11

 Insert: Place in next spot, percUp

 How high do we expect it to go?

 Aside: Complete Binary Tree
 Each full row has 2x nodes of parent row

 1+2+4+8+…+2k= 2k+1-1

 Bottom level has ~1/2 of all nodes

 Second to bottom has ~1/4 of all nodes

 PercUp Intuition:
 Move up if value is less than parent

 Inserting a random value, likely to have value not near highest, nor lowest;
somewhere in middle

 Given a random distribution of values in the heap, bottom row should have the
upper half of values, 2nd from bottom row, next 1/4

 Expect to only raise a level or 2, even if h is large

 Worst case: still O(logn)

 Expected case: O(1)

 Of course, there‟s no guarantee; it may percUp to the root

996040

8020

10

700 50

85

Build Heap

12

 Suppose you started with n items to put in a new
priority queue
 Call this the buildHeap operation

 create, followed by n inserts works

 Only choice if ADT doesn‟t provide buildHeap explicitly

 O(n log n)

 Why would an ADT provide this unnecessary
operation?
 Convenience

 Efficiency: an O(n) algorithm called Floyd‟s Method

Floyd’s Method

13

1. Use n items to make any complete tree you want

 That is, put them in array indices 1,…,n

2. Treat it as a heap by fixing the heap-order property

 Bottom-up: leaves are already in heap order, work up
toward the root one level at a time

void buildHeap() {

for(i = size/2; i>0; i--) {

val = arr[i];

hole = percolateDown(i,val);

arr[hole] = val;

}

}

Example

14

 Say we start with

 [12,5,11,3,10,2,9,4,8,1,7,6]

 In tree form for readability
 Red for node not less than

descendants
 Heap-order violation

 Notice no leaves are red

 Check/fix each non-leaf bottom-
up (6 steps here)

6718

92103

115

12

4

15

 Happens to already be less than children
(er, child)

6718

92103

115

12

4 6718

92103

115

12

4

Step 1

Example

16

 Percolate down (notice that moves 1 up)

6718

92103

115

12

4

Step 2

67108

9213

115

12

4

Example

17

 Another nothing-to-do step

Step 3

67108

9213

115

12

4 67108

9213

115

12

4

Example

18

 Percolate down as necessary (steps 4a
and 4b)

Step 4

117108

9613

25

12

467108

9213

115

12

4

Example

19

Step 5

117108

9653

21

12

4117108

9613

25

12

4

Example

20

Step 6

117108

9654

23

1

12117108

9653

21

12

4

Example

But is it right?

21

 “Seems to work”
 Let‟s prove it restores the heap property (correctness)

 Then let‟s prove its running time (efficiency)

void buildHeap() {

for(i = size/2; i>0; i--) {

val = arr[i];

hole = percolateDown(i,val);

arr[hole] = val;

}

}

Correctness

22

Loop Invariant: For all j>i, arr[j] is less than its children

 True initially: If j > size/2, then j is a leaf
 Otherwise its left child would be at position > size

 True after one more iteration: loop body and
percolateDown make arr[i] less than children
without breaking the property for any descendants

So after the loop finishes, all nodes are less than their
children: Equivalent to the heap ordering property

void buildHeap() {

for(i = size/2; i>0; i--) {

val = arr[i];

hole = percolateDown(i,val);

arr[hole] = val;

}

}

Efficiency

23

Easy argument: buildHeap is O(n log n) where n is
size

 size/2 loop iterations

 Each iteration does one percolateDown, each is O(log
n)

This is correct, but there is a more precise (“tighter”)
analysis of the algorithm…

void buildHeap() {

for(i = size/2; i>0; i--) {

val = arr[i];

hole = percolateDown(i,val);

arr[hole] = val;

}

}

Efficiency

24

Better argument: buildHeap is O(n) where n is size

 size/2 total loop iterations: O(n)

 1/2 the loop iterations percolate at most 1 step

 1/4 the loop iterations percolate at most 2 steps

 1/8 the loop iterations percolate at most 3 steps

 …

 ((1/2) + (2/4) + (3/8) + (4/16) + (5/32) + …) < 2 (page 4 of Weiss)
 So at most 2(size/2) total percolate steps: O(n)

void buildHeap() {

for(i = size/2; i>0; i--) {

val = arr[i];

hole = percolateDown(i,val);

arr[hole] = val;

}

}

Lessons from buildHeap

25

 Without buildHeap, our ADT already let clients
implement their own in (n log n) worst case
 Worst case is inserting lower priority values later

 By providing a specialized operation internally (with
access to the data structure), we can do O(n) worst
case
 Intuition: Most data is near a leaf, so better to percolate

down

 Can analyze this algorithm for:
 Correctness: Non-trivial inductive proof using loop invariant

 Efficiency:
 First analysis easily proved it was O(n log n)

 A “tighter” analysis shows same algorithm is O(n)

What we’re skipping (see text if curious)

26

 d-heaps: have d children instead of 2
 Makes heaps shallower

 Approximate height of a complete d-ary tree with n nodes?

 How does this affect the asymptotic run-time (for small d‟s)?

 Useful for huge tree data structures that are too large to fit in
memory; accessing a node will require accessing the hard-drive
(incredibly slow) – limit nodes accessed: B-Trees

 Aside: How would we do a „merge‟ for 2 binary heaps?
 Answer: Slowly; have to buildHeap; O(n) time

 Will always have to copy over data from one array

 Different data structures for priority queues that support a
logarithmic time merge operation (impossible with binary
heaps)
 Leftist heaps, skew heaps, binomial queue: Insert & deleteMin defined

in terms of merge

 Special case: How might you merge binary heaps if one heap is
much smaller than the other?

