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A new ADT: Priority Queue
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 Textbook Chapter 6: Priority Queues

 Will go back to binary search trees (4) and hashtables (5) later

 A priority queue holds compare-able data

 Unlike stacks and queues need to compare items

 Given x and y, is x less than, equal to, or greater than y

 What this means can depend on your data

 Numbers: numeric ordering

 Strings: lexicon ordering

 Employee profile: lexicon ordering on name?  Id?

 Much of course will require comparable items:

 Sorting

 Binary Search Trees

 Integers are comparable, so will use them in examples

 But the priority queue ADT is much more general



Priority Queues
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 Assume each item has a “priority”
 The lesser value item is the one with the greater priority

 So “priority 1” is more important than “priority 4”

 (Just a convention)

 Operations: 
 insert

 deleteMin

 create,  is_empty,  destroy

 Key property: deleteMin returns and deletes from 
the queue the item with greatest priority (lowest 
priority value)
 Can resolve ties arbitrarily

insert deleteMin

6        2

15  23

12   18

45   3    7



Focusing on the numbers
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 For simplicity in lecture, we‟ll often suppose items 
are just ints and the int is the priority

 So an operation sequence could be

insert 6

insert 5

x = deleteMin

– int priorities are common, but really just need 

comparable

 Not having “other data” is very rare

 Example: print job is a priority and the file



Example
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insert 5

insert 3

insert 4

a = deleteMin

b = deleteMin

insert 2

insert 6

c = deleteMin

d = deleteMin

 Analogy: insert is like enqueue, deleteMin is like 
dequeue

 But the whole point is to use priorities instead of FIFO

3

4

2

5



Applications
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Like all good ADTs, the priority queue arises often
 Run multiple programs in the operating system
 “critical” before “interactive” before “compute-intensive”

 Maybe let users set priority level

 Treat hospital patients in order of severity (or triage)

 Select print jobs in order of decreasing length?

 Forward network packets in order of urgency

 Select most frequent symbols for data compression 
(cf. CSE143)

 Sort: insert all, then repeatedly deleteMin

 Much like Project 1 uses a stack to implement reverse



More applications for Priority Queues
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 “Greedy” algorithms
 Perform the „best-looking‟ choice at the moment

 Will see an example when we study graphs in a few weeks

 Discrete event simulation (system modeling, virtual worlds, 
…)
 Simulate how state changes when events fire

 Each event e happens at some time t and generates new events 
e1, …, en at times t+t1, …, t+tn

 Naïve approach: advance “clock” by 1 unit at a time and process 
any events that happen then

 Better:
 Pending events in a priority queue (priority = time happens)

 Repeatedly: deleteMin and then insert new events

 Effectively, “set clock ahead to next event”



Need a good data structure!
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 Will show an efficient, non-obvious data structure for this 
ADT

 But first let‟s analyze some “obvious” ideas for n data items

 All times worst-case; but assume arrays “have room”

data insert algorithm / time deleteMin algorithm / time

unsorted array

unsorted linked list

sorted circular array

sorted linked list

binary search tree

add at end          O(1)     search                 O(n)

add at front         O(1)     search                 O(n)

search / shift       O(n)         move front          O(1)

put in right place O(n) remove at front O(1)

put in right place O(n) leftmost               O(n)



More on possibilities
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 If priorities are random, binary search tree will likely do better

 O(log n) insert and O(log n) deleteMin on average

 One more idea: if priorities are 0, 1, …, k can use array of lists

 insert: add to front of list at arr[priority], O(1)

 deleteMin: remove from lowest non-empty list O(k)

 Only really feasible for small k

 But we are about to see a data structure called a “binary heap”

 O(log n) insert and O(log n) deleteMin worst-case

 Very good constant factors

 If items arrive in random order, then insert is O(1) on average!



Tree terms (review?)

10

The binary heap data structure 

implementing the priority queue 

ADT will be a tree, so worth 

establishing some terminology

A

E

B

D F

C

G

IH

LJ MK N

Tree T

root(tree)

children(node)

parent(node)

leaves(tree)

siblings(node)

ancestors(node)

descendents(node)

subtree(node)

depth(node)

height(tree)

degree(node)

branching factor(tree)



Kinds of trees
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Certain terms define trees with specific structure

 Binary tree:  Each node has at most 2 children

 n-ary tree:  Each node as at most n children

 Complete tree:  Each row is completely full except 
maybe the bottom row, which is filled from left to right

Later we‟ll learn a tree is a kind of directed graph with specific 

structure



Binary Heap: Priority Queue DS
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Finally, then, a binary min-heap (aka binary heap or just 
heap) has the following 2 properties:

 Structure property : A complete tree

 Heap ordering property: For every (non-root) node the 
parent node‟s value is less than the node‟s value

1530

8020

10

996040

8020

10

50 700

85

not a heap

a heap

So:

• Where is the highest-priority item?

• What is the height of a heap with n items?

root

O(logn)



Operations: basic idea
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 findMin: return root.data

 deleteMin: 
1. answer = root.data

2. Move right-most node in last 
row to root to restore structure 
property

3. “Percolate down” to restore 
heap property

 insert:

1. Put new node in next position 
on bottom row to restore 
structure property

2. “Percolate up” to restore heap 
property

996040

8020

10

50 700

85



DeleteMin

14

1. Delete (and return) value at root 

node
34

9857

106911



2. Restore the Structure Property
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 We now have a “hole” at the 

root

 Need to fill the hole with another 

value

 When we are done, the tree will 

have one less node and must 

still be complete

34

9857

106911

34

9857

106911



3. Restore the Heap Property
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Percolate down: 

• Keep comparing with both children 

• Move smaller child up and go down one level

• Done if both children are  item or reached a leaf node

• What is the run time?

•Why not swap with larger of children, if it‟s smaller than both?

34

9857

10

6911

?

84

91057

6911

3

4

9857

6911

3
10

?

O(logn)



Insert
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 Add a value to the tree

 Structure and heap order 

properties must still be 

correct afterwards
84

91057

6911

1

2



Insert: Maintain the Structure Property
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 There is only one valid tree shape 
after we add one more node

 So put our new data there and then 
focus on restoring the heap property

84

91057

6911

1

2



Maintain the heap property
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2

84

91057

6911

1

Percolate up:

• Put new data in new location

• If parent larger, swap with parent, and continue

• Done if parent  item or reached root

• Run time?

?

2
5

84

9107

6911

1

?

2

5

8

91047

6911

1?

At the end, how do we know 2 is going to be less than its left child (here, 7) which 

it wasn’t compared against?



Insert: Run Time Analysis
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 Like deleteMin, worst-case time proportional to tree height
 O(log n)

 But… deleteMin needs the “last used” complete-tree 
position and insert needs the “next to use” complete-tree 
position
 If “keep a reference to there” then insert and deleteMin have 

to adjust that reference: O(log n) in worst case

 Could calculate how to find it in O(log n) from the root given the 
size of the heap
 But it‟s not easy

 And then insert is always O(log n); what about the promised O(1) on 
average (assuming random arrival of items)?

 There‟s a “trick”: don‟t represent complete trees as nodes 
with pointers to children


