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A new ADT: Priority Queue

2

 Textbook Chapter 6: Priority Queues

 Will go back to binary search trees (4) and hashtables (5) later

 A priority queue holds compare-able data

 Unlike stacks and queues need to compare items

 Given x and y, is x less than, equal to, or greater than y

 What this means can depend on your data

 Numbers: numeric ordering

 Strings: lexicon ordering

 Employee profile: lexicon ordering on name?  Id?

 Much of course will require comparable items:

 Sorting

 Binary Search Trees

 Integers are comparable, so will use them in examples

 But the priority queue ADT is much more general



Priority Queues
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 Assume each item has a “priority”
 The lesser value item is the one with the greater priority

 So “priority 1” is more important than “priority 4”

 (Just a convention)

 Operations: 
 insert

 deleteMin

 create,  is_empty,  destroy

 Key property: deleteMin returns and deletes from 
the queue the item with greatest priority (lowest 
priority value)
 Can resolve ties arbitrarily

insert deleteMin

6        2

15  23

12   18

45   3    7



Focusing on the numbers
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 For simplicity in lecture, we‟ll often suppose items 
are just ints and the int is the priority

 So an operation sequence could be

insert 6

insert 5

x = deleteMin

– int priorities are common, but really just need 

comparable

 Not having “other data” is very rare

 Example: print job is a priority and the file



Example
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insert 5

insert 3

insert 4

a = deleteMin

b = deleteMin

insert 2

insert 6

c = deleteMin

d = deleteMin

 Analogy: insert is like enqueue, deleteMin is like 
dequeue

 But the whole point is to use priorities instead of FIFO

3

4

2

5



Applications
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Like all good ADTs, the priority queue arises often
 Run multiple programs in the operating system
 “critical” before “interactive” before “compute-intensive”

 Maybe let users set priority level

 Treat hospital patients in order of severity (or triage)

 Select print jobs in order of decreasing length?

 Forward network packets in order of urgency

 Select most frequent symbols for data compression 
(cf. CSE143)

 Sort: insert all, then repeatedly deleteMin

 Much like Project 1 uses a stack to implement reverse



More applications for Priority Queues
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 “Greedy” algorithms
 Perform the „best-looking‟ choice at the moment

 Will see an example when we study graphs in a few weeks

 Discrete event simulation (system modeling, virtual worlds, 
…)
 Simulate how state changes when events fire

 Each event e happens at some time t and generates new events 
e1, …, en at times t+t1, …, t+tn

 Naïve approach: advance “clock” by 1 unit at a time and process 
any events that happen then

 Better:
 Pending events in a priority queue (priority = time happens)

 Repeatedly: deleteMin and then insert new events

 Effectively, “set clock ahead to next event”



Need a good data structure!
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 Will show an efficient, non-obvious data structure for this 
ADT

 But first let‟s analyze some “obvious” ideas for n data items

 All times worst-case; but assume arrays “have room”

data insert algorithm / time deleteMin algorithm / time

unsorted array

unsorted linked list

sorted circular array

sorted linked list

binary search tree

add at end          O(1)     search                 O(n)

add at front         O(1)     search                 O(n)

search / shift       O(n)         move front          O(1)

put in right place O(n) remove at front O(1)

put in right place O(n) leftmost               O(n)



More on possibilities
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 If priorities are random, binary search tree will likely do better

 O(log n) insert and O(log n) deleteMin on average

 One more idea: if priorities are 0, 1, …, k can use array of lists

 insert: add to front of list at arr[priority], O(1)

 deleteMin: remove from lowest non-empty list O(k)

 Only really feasible for small k

 But we are about to see a data structure called a “binary heap”

 O(log n) insert and O(log n) deleteMin worst-case

 Very good constant factors

 If items arrive in random order, then insert is O(1) on average!



Tree terms (review?)
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The binary heap data structure 

implementing the priority queue 

ADT will be a tree, so worth 

establishing some terminology

A

E

B

D F

C

G

IH

LJ MK N

Tree T

root(tree)

children(node)

parent(node)

leaves(tree)

siblings(node)

ancestors(node)

descendents(node)

subtree(node)

depth(node)

height(tree)

degree(node)

branching factor(tree)



Kinds of trees
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Certain terms define trees with specific structure

 Binary tree:  Each node has at most 2 children

 n-ary tree:  Each node as at most n children

 Complete tree:  Each row is completely full except 
maybe the bottom row, which is filled from left to right

Later we‟ll learn a tree is a kind of directed graph with specific 

structure



Binary Heap: Priority Queue DS
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Finally, then, a binary min-heap (aka binary heap or just 
heap) has the following 2 properties:

 Structure property : A complete tree

 Heap ordering property: For every (non-root) node the 
parent node‟s value is less than the node‟s value

1530

8020

10

996040

8020

10

50 700

85

not a heap

a heap

So:

• Where is the highest-priority item?

• What is the height of a heap with n items?

root

O(logn)



Operations: basic idea
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 findMin: return root.data

 deleteMin: 
1. answer = root.data

2. Move right-most node in last 
row to root to restore structure 
property

3. “Percolate down” to restore 
heap property

 insert:

1. Put new node in next position 
on bottom row to restore 
structure property

2. “Percolate up” to restore heap 
property

996040

8020

10

50 700

85



DeleteMin
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1. Delete (and return) value at root 

node
34

9857

106911



2. Restore the Structure Property
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 We now have a “hole” at the 

root

 Need to fill the hole with another 

value

 When we are done, the tree will 

have one less node and must 

still be complete

34

9857

106911

34

9857

106911



3. Restore the Heap Property
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Percolate down: 

• Keep comparing with both children 

• Move smaller child up and go down one level

• Done if both children are  item or reached a leaf node

• What is the run time?

•Why not swap with larger of children, if it‟s smaller than both?

34

9857

10

6911

?

84

91057

6911

3

4

9857

6911

3
10

?

O(logn)



Insert
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 Add a value to the tree

 Structure and heap order 

properties must still be 

correct afterwards
84

91057

6911

1

2



Insert: Maintain the Structure Property
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 There is only one valid tree shape 
after we add one more node

 So put our new data there and then 
focus on restoring the heap property

84

91057

6911

1

2



Maintain the heap property
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2

84

91057

6911

1

Percolate up:

• Put new data in new location

• If parent larger, swap with parent, and continue

• Done if parent  item or reached root

• Run time?

?

2
5

84

9107

6911

1

?

2

5

8

91047

6911

1?

At the end, how do we know 2 is going to be less than its left child (here, 7) which 

it wasn’t compared against?



Insert: Run Time Analysis
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 Like deleteMin, worst-case time proportional to tree height
 O(log n)

 But… deleteMin needs the “last used” complete-tree 
position and insert needs the “next to use” complete-tree 
position
 If “keep a reference to there” then insert and deleteMin have 

to adjust that reference: O(log n) in worst case

 Could calculate how to find it in O(log n) from the root given the 
size of the heap
 But it‟s not easy

 And then insert is always O(log n); what about the promised O(1) on 
average (assuming random arrival of items)?

 There‟s a “trick”: don‟t represent complete trees as nodes 
with pointers to children


