
CSE332: Data Abstractions

Lecture 4: Priority Queues

Tyler Robison

Summer 2010

1

A new ADT: Priority Queue

2

 Textbook Chapter 6: Priority Queues

 Will go back to binary search trees (4) and hashtables (5) later

 A priority queue holds compare-able data

 Unlike stacks and queues need to compare items

 Given x and y, is x less than, equal to, or greater than y

 What this means can depend on your data

 Numbers: numeric ordering

 Strings: lexicon ordering

 Employee profile: lexicon ordering on name? Id?

 Much of course will require comparable items:

 Sorting

 Binary Search Trees

 Integers are comparable, so will use them in examples

 But the priority queue ADT is much more general

Priority Queues

3

 Assume each item has a “priority”
 The lesser value item is the one with the greater priority

 So “priority 1” is more important than “priority 4”

 (Just a convention)

 Operations:
 insert

 deleteMin

 create, is_empty, destroy

 Key property: deleteMin returns and deletes from
the queue the item with greatest priority (lowest
priority value)
 Can resolve ties arbitrarily

insert deleteMin

6 2

15 23

12 18

45 3 7

Focusing on the numbers

4

 For simplicity in lecture, we‟ll often suppose items
are just ints and the int is the priority

 So an operation sequence could be

insert 6

insert 5

x = deleteMin

– int priorities are common, but really just need

comparable

 Not having “other data” is very rare

 Example: print job is a priority and the file

Example

5

insert 5

insert 3

insert 4

a = deleteMin

b = deleteMin

insert 2

insert 6

c = deleteMin

d = deleteMin

 Analogy: insert is like enqueue, deleteMin is like
dequeue

 But the whole point is to use priorities instead of FIFO

3

4

2

5

Applications

6

Like all good ADTs, the priority queue arises often
 Run multiple programs in the operating system
 “critical” before “interactive” before “compute-intensive”

 Maybe let users set priority level

 Treat hospital patients in order of severity (or triage)

 Select print jobs in order of decreasing length?

 Forward network packets in order of urgency

 Select most frequent symbols for data compression
(cf. CSE143)

 Sort: insert all, then repeatedly deleteMin

 Much like Project 1 uses a stack to implement reverse

More applications for Priority Queues

7

 “Greedy” algorithms
 Perform the „best-looking‟ choice at the moment

 Will see an example when we study graphs in a few weeks

 Discrete event simulation (system modeling, virtual worlds,
…)
 Simulate how state changes when events fire

 Each event e happens at some time t and generates new events
e1, …, en at times t+t1, …, t+tn

 Naïve approach: advance “clock” by 1 unit at a time and process
any events that happen then

 Better:
 Pending events in a priority queue (priority = time happens)

 Repeatedly: deleteMin and then insert new events

 Effectively, “set clock ahead to next event”

Need a good data structure!

8

 Will show an efficient, non-obvious data structure for this
ADT

 But first let‟s analyze some “obvious” ideas for n data items

 All times worst-case; but assume arrays “have room”

data insert algorithm / time deleteMin algorithm / time

unsorted array

unsorted linked list

sorted circular array

sorted linked list

binary search tree

add at end O(1) search O(n)

add at front O(1) search O(n)

search / shift O(n) move front O(1)

put in right place O(n) remove at front O(1)

put in right place O(n) leftmost O(n)

More on possibilities

9

 If priorities are random, binary search tree will likely do better

 O(log n) insert and O(log n) deleteMin on average

 One more idea: if priorities are 0, 1, …, k can use array of lists

 insert: add to front of list at arr[priority], O(1)

 deleteMin: remove from lowest non-empty list O(k)

 Only really feasible for small k

 But we are about to see a data structure called a “binary heap”

 O(log n) insert and O(log n) deleteMin worst-case

 Very good constant factors

 If items arrive in random order, then insert is O(1) on average!

Tree terms (review?)

10

The binary heap data structure

implementing the priority queue

ADT will be a tree, so worth

establishing some terminology

A

E

B

D F

C

G

IH

LJ MK N

Tree T

root(tree)

children(node)

parent(node)

leaves(tree)

siblings(node)

ancestors(node)

descendents(node)

subtree(node)

depth(node)

height(tree)

degree(node)

branching factor(tree)

Kinds of trees

11

Certain terms define trees with specific structure

 Binary tree: Each node has at most 2 children

 n-ary tree: Each node as at most n children

 Complete tree: Each row is completely full except
maybe the bottom row, which is filled from left to right

Later we‟ll learn a tree is a kind of directed graph with specific

structure

Binary Heap: Priority Queue DS

12

Finally, then, a binary min-heap (aka binary heap or just
heap) has the following 2 properties:

 Structure property : A complete tree

 Heap ordering property: For every (non-root) node the
parent node‟s value is less than the node‟s value

1530

8020

10

996040

8020

10

50 700

85

not a heap

a heap

So:

• Where is the highest-priority item?

• What is the height of a heap with n items?

root

O(logn)

Operations: basic idea

13

 findMin: return root.data

 deleteMin:
1. answer = root.data

2. Move right-most node in last
row to root to restore structure
property

3. “Percolate down” to restore
heap property

 insert:

1. Put new node in next position
on bottom row to restore
structure property

2. “Percolate up” to restore heap
property

996040

8020

10

50 700

85

DeleteMin

14

1. Delete (and return) value at root

node
34

9857

106911

2. Restore the Structure Property

15

 We now have a “hole” at the

root

 Need to fill the hole with another

value

 When we are done, the tree will

have one less node and must

still be complete

34

9857

106911

34

9857

106911

3. Restore the Heap Property

16

Percolate down:

• Keep comparing with both children

• Move smaller child up and go down one level

• Done if both children are  item or reached a leaf node

• What is the run time?

•Why not swap with larger of children, if it‟s smaller than both?

34

9857

10

6911

?

84

91057

6911

3

4

9857

6911

3
10

?

O(logn)

Insert

17

 Add a value to the tree

 Structure and heap order

properties must still be

correct afterwards
84

91057

6911

1

2

Insert: Maintain the Structure Property

18

 There is only one valid tree shape
after we add one more node

 So put our new data there and then
focus on restoring the heap property

84

91057

6911

1

2

Maintain the heap property

19

2

84

91057

6911

1

Percolate up:

• Put new data in new location

• If parent larger, swap with parent, and continue

• Done if parent  item or reached root

• Run time?

?

2
5

84

9107

6911

1

?

2

5

8

91047

6911

1?

At the end, how do we know 2 is going to be less than its left child (here, 7) which

it wasn’t compared against?

Insert: Run Time Analysis

20

 Like deleteMin, worst-case time proportional to tree height
 O(log n)

 But… deleteMin needs the “last used” complete-tree
position and insert needs the “next to use” complete-tree
position
 If “keep a reference to there” then insert and deleteMin have

to adjust that reference: O(log n) in worst case

 Could calculate how to find it in O(log n) from the root given the
size of the heap
 But it‟s not easy

 And then insert is always O(log n); what about the promised O(1) on
average (assuming random arrival of items)?

 There‟s a “trick”: don‟t represent complete trees as nodes
with pointers to children

