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 Asymptotic analysis

 Why we care

 Big Oh notation
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 Evaluating an algorithm

 Big Oh‟s family

 Recurrence relations



What do we want to analyze?
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 Correctness

 Performance: Algorithm‟s speed or memory usage: 

our focus

 Change in speed as the input grows

 n increases by 1

 n doubles

 Comparison between 2 algorithms

 Security

 Reliability



Gauging performance
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 Uh, why not just run the program and time it?

 Too much variability; not reliable:

 Hardware: processor(s), memory, etc.

 OS, version of Java, libraries, drivers

 Programs running in the background

 Implementation dependent

 Choice of input

 Timing doesn‟t really evaluate the algorithm; it evaluates 

its implementation in one very specific scenario



Gauging performance (cont.)
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 At the core of CS is a backbone of theory & mathematics

 Examine the algorithm itself, mathematically, not the 
implementation

 Reason about performance as a function of n

 Be able to mathematically prove things about performance

 Yet, timing has its place

 In the real world, we do want to know whether implementation 
A runs faster than implementation B on data set C

 Ex: Benchmarking graphics cards

 Will do some timing in project 3 (and in 2, a bit)

 Evaluating an algorithm?  Use asymptotic analysis

 Evaluating an implementation of hardware/software?  
Timing can be useful



Big-Oh
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 Say we‟re given 2 run-time functions f(n) & g(n) for input n

 The Definition: f(n) is in O(g(n) ) iff there exist positive constants c
and n0 such that

f(n)   c g(n), for all n  n0.

 The Idea: Can we find an n0 such that g is 

always greater than f from there on out?

We are allowed to multiply g by a constant 

value (say, 10) to make g larger

O(g(n)) is really a set of functions whose asymptotic behavior is less 
than or equal that of g(n)

Think of „f(n) is in O(g(n))‟ as f(n) ≤ g(n) (sort of)

or ‘f(n) is in O(g(n))’ as g(n) is an upper-bound for f(n) (sort of)

n

n0

g

f



Big Oh (cont.)
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 The Intuition:
 Take functions f(n) & g(n), consider only the most 

significant term and remove constant multipliers:

 5n+3 → n

 7n+.5n2+2000 → n2

 300n+12+nlogn → nlogn

 – n → ??? What does it mean to have a negative run-time?

 Then compare the functions; if f(n) ≤ g(n), then 

f(n) is in O(g(n))

 Do NOT ignore constants that are not multipliers:

 n3 is O(n2) : FALSE

 3n is O(2n) : FALSE

 When in doubt, refer to the definition



Examples
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 True or false?

1. 4+3n is O(n)

2. n+2logn is O(logn)

3. logn+2 is O(1)

4. n50 is O(1.1n)

True

False

False

True



Examples (cont.)
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 For f(n)=4n & g(n)=n2, prove f(n) is in O(g(n))

 A valid proof is to find valid c & n0

 When n=4, f=16 & g=16; this is the crossing over point

 Say n0 = 4, and c=1

 (Infinitely) Many possible choices: ex: n0 = 78, and c=42 

works fine

The Definition: f(n) is in O(g(n) ) 

iff there exist positive constants c

and n0 such that

f(n)   c g(n) for all n  n0.



Examples (cont.)
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 For f(n)=n4 & g(n)=2n, prove f(n) is in O(g(n))

 Possible answer: n0=20, c=1

The Definition: f(n) is in O(g(n) ) 

iff there exist positive constants c

and n0 such that

f(n)   c g(n) for all n  n0.



What’s with the c?
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 To capture this notion of similar asymptotic behavior, 

we allow a constant multiplier (called c)

 Consider:

f(n)=7n+5

g(n)=n

 These have the same asymptotic behavior (linear), 

so f(n) is in O(g(n)) even though f is always larger

 There is no positive n0 such that f(n)≤g(n) for all n≥n0

 The „c‟ in the definition allows for that

 To prove f(n) is in O(g(n)), have c=12, n0=1



Big Oh: Common Categories
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From fastest to slowest

O(1) constant (same as O(k) for constant k)

O(log n) logarithmic

O(n) linear

O(n log n)         “n log n”

O(n2) quadratic

O(n3) cubic

O(nk) polynomial (where is k is an constant)

O(kn) exponential (where k is any constant > 1)

Usage note: “exponential” does not mean “grows really fast”, 
it means “grows at rate proportional to kn for some k>1”

 A savings account accrues interest exponentially (k=1.01?)



Caveats
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 Asymptotic complexity focuses on behavior for large 

n and is independent of any computer/coding trick, 

but results can be misleading

 Example: n1/10 vs. log n

 Asymptotically n1/10 grows more quickly

 But the “cross-over” point is around 5 * 1017

 So if you have input size less than 258, prefer n1/10



Caveats
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 Even for more common functions, comparing O() for 

small n values can be misleading

 Quicksort: O(nlogn) (expected)

 Insertion Sort: O(n2)(expected)

 Yet in reality Insertion Sort is faster for small n‟s

 We‟ll learn about these sorts later

 Usually talk about an algorithm being O(n) or 

whatever

 But you can prove bounds for entire problems

 Ex: No algorithm can do better than logn in the worst case for 

finding an element in a sorted array, without parallelism



Miscellaneous
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 Not uncommon to evaluate for:

 Best-case

 Worst-case

 „Expected case‟

 So we say (3n2+17)  is in O(n2) 

 Confusingly, we also say/write:

 (3n2+17)  is O(n2) 

 (3n2+17)  = O(n2) 

 But it‟s not „=„ as in „equality‟:

 We would never say O(n2) =  (3n2+17)



Analyzing code (“worst case”)
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Basic operations  take “some amount of” constant time:
 Arithmetic (fixed-width)

 Assignment to a variable

 Access one Java field or array index

 Etc.

(This is an approximation of reality: a useful “lie”.)

Consecutive statements Sum of times

Conditionals Time of test plus slower branch

Loops Sum of iterations

Calls Time of call‟s body

Recursion Solve recurrence equation 
(in a bit)



Analyzing code
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What is the run-time for the following code when

1. for(int i=0;i<n;i++) O(1)

2. for(int i=0;i<n;i++) O(i)

3. for(int i=0;i<n;i++) for(int j=0;j<n;j++) O(n)

O(n)

O(n2)

O(n3)



Big Oh’s Family
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 Big Oh: Upper bound: O( f(n) ) is the set of all functions 

asymptotically less than or equal to f(n)

 g(n) is in O( f(n) ) if there exist  constants c and n0 such that 

g(n)  c f(n) for all n  n0

 Big Omega: Lower bound: ( f(n) ) is the set of all 

functions asymptotically greater than or equal to f(n)

 g(n) is in ( f(n) ) if there exist  constants c and n0 such that 

g(n)  c f(n) for all n  n0

 Big Theta: Tight bound: ( f(n) ) is the set of all functions 

asymptotically equal to f(n)

 Intersection of O( f(n) ) and ( f(n) )  (use different c values)



Regarding use of terms
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Common error is to say O(f(n)) when you mean (f(n))
 People often say O() to mean a tight bound

 Say we have f(n)=n; we could say f(n) is in O(n), which is 
true, but only conveys the upper-bound

 Somewhat incomplete; instead say it is (n)

 That means that it is not, for example O(log n)

Less common notation:
 “little-oh”: like “big-Oh” but strictly less than

 Example: sum is o(n2) but not o(n)

 “little-omega”: like “big-Omega” but strictly greater than
 Example: sum is (log n) but not (n)



Recurrence Relations
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 Computing run-times gets interesting with recursion

 Say we want to perform some computation 

recursively on a list of size n

 Conceptually, in each recursive call we:

 Perform some amount of work, call it w(n)

 Call the function recursively with a smaller portion of the list

So, if we do w(n) work per step, and reduce the n in 

the next recursive call by 1, we do total work:

T(n)=w(n)+T(n-1)

With some base case, like T(1)=5=O(1)



Recursive version of sum array
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Recurrence Relation: T(n) = O(1) + T(n-1)

int sum(int[] arr){
return help(arr,0);

}
int help(int[]arr,int i) {
if(i==arr.length) 
return 0;

return arr[i] + help(arr,i+1);
}

Recursive:

– Recurrence is 

k + k + … + k

for n times



Recurrence Relations (cont.)
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Say we have the following recurrence relation:

T(n)=2+T(n-1)

T(1)=5

Now we just need to solve it; that is, reduce it to a 
closed form

Start by writing it out:

T(n)=2+T(n-1)=2+2+T(n-2)=2+2+2+T(n-3)

=2+2+2+…+2+T(1)=2+2+2+…+2+5

So it looks like

T(n)=2(n-1)+5=2n+3=O(n)



Example: Find k
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Find an integer in a sorted array

2 3 5 16 37 50 73 75 126

// requires array is sorted     

// returns whether k is in array

boolean find(int[]arr, int k){

???

}



Linear search
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Find an integer in a sorted array

2 3 5 16 37 50 73 75 126

// requires array is sorted     

// returns whether k is in array

boolean find(int[]arr, int k){

for(int i=0; i < arr.length; ++i)

if(arr[i] == k)

return true;

return false;

}

Best case: 6ish steps = O(1)

Worst case: 6ish*(arr.length)  

= O(arr.length) = O(n)



Binary search
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Find an integer in a sorted array

 Can also be done non-recursively but “doesn‟t matter” here

2 3 5 16 37 50 73 75 126

// requires array is sorted     
// returns whether k is in array
boolean find(int[]arr, int k){

return help(arr,k,0,arr.length);
}
boolean help(int[]arr, int k, int lo, int hi) {

int mid = (hi+lo)/2; //i.e., lo+(hi-lo)/2
if(lo==hi)      return false;
if(arr[mid]==k) return true;
if(arr[mid]< k) return help(arr,k,mid+1,hi);
else return help(arr,k,lo,mid);

}



Binary search
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// requires array is sorted     
// returns whether k is in array
boolean find(int[]arr, int k){

return help(arr,k,0,arr.length);
}
boolean help(int[]arr, int k, int lo, int hi) {

int mid = (hi+lo)/2;
if(lo==hi)      return false;
if(arr[mid]==k) return true;
if(arr[mid]< k) return help(arr,k,mid+1,hi);
else return help(arr,k,lo,mid);

}

Best case: 8ish steps = O(1)

Worst case:  

T(n) = 10ish + T(n/2) where n is hi-lo



Solving Recurrence Relations
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1. Determine the recurrence relation.  What is the base 
case?
 T(n) = 10 + T(n/2) T(1) = 8

2. “Expand” the original relation to find an equivalent general 
expression in terms of the number of expansions.
 T(n)  = 10 + 10 + T(n/4)

= 10 + 10 + 10 + T(n/8)
= …
= 10k + T(n/(2k)) where k is the # of expansions

3. Find a closed-form expression by setting the number of 
expansions to a value which reduces the problem to a 
base case
 n/(2k) = 1 means n = 2k means k = log2 n
 So T(n) = 10 log2 n + 8  (get to base case and do it)
 So T(n) is O(log n)



Linear vs Binary Search
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 So binary search is O(log n) and linear is O(n)

 Given the constants, linear search could still be faster for 

small values of n

Example w/ hypothetical constants:



What about a binary version of sum?
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Recurrence is T(n) = O(1) + 2T(n/2) = O(n)

(Proof left as an exercise)

“Obvious”: have to read the whole array

You can‟t do better than O(n)

Or can you… 

We‟ll see a parallel version of this much later

With ∞ processors, T(n) = O(1) + 1T(n/2) = O(logn)

int sum(int[] arr){
return help(arr,0,arr.length);

}
int help(int[] arr, int lo, int hi) {

if(lo==hi)   return 0;
if(lo==hi-1) return arr[lo];   
int mid = (hi+lo)/2;
return help(arr,lo,mid) + help(arr,mid,hi);

}



Really common recurrences
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Should know how to solve recurrences but also recognize some

really common ones:

T(n) = O(1) + T(n-1) linear

T(n) = O(1) + 2T(n/2) linear

T(n) = O(1) + T(n/2) logarithmic

T(n) = O(1) + 2T(n-1) exponential

T(n) = O(n) + T(n-1) quadratic

T(n) = O(n) + T(n/2) linear

T(n) = O(n) + 2T(n/2) O(n log n)

Note big-Oh can also use more than one variable (graphs: 
vertices & edges)

 Example: you can (and will in proj3!) sum all elements of an n-
by-m matrix in O(nm)


